cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353533 T(n,m) with 4 <= m < n is the number of quadrilaterals in A353532 with perpendicular diagonals, where T(n,m) is a triangle read by rows.

This page as a plain text file.
%I A353533 #11 May 08 2022 08:23:34
%S A353533 1,2,1,2,2,3,3,3,4,6,3,5,5,8,9,4,4,6,12,12,12,4,4,12,8,11,15,14,5,5,8,
%T A353533 10,15,15,20,18,5,5,8,27,15,33,32,26,25,6,6,10,11,17,17,23,22,29,29,6,
%U A353533 6,10,12,48,18,24,29,30,42,34,7,7,16,14,21,21,41,69,34
%N A353533 T(n,m) with 4 <= m < n is the number of quadrilaterals in A353532 with perpendicular diagonals, where T(n,m) is a triangle read by rows.
%e A353533 The quadrilaterals counted in A353532 with m = 3 or m = n cannot have perpendicular diagonals, and are therefore omitted in the triangle of this sequence.
%e A353533 .
%e A353533     \ m 3   4   5   6   7   8   9  10  11
%e A353533    n \-----------------------------------
%e A353533    3 |  0,  |   |   |   |   |   |   |   |
%e A353533    4 |  0,  0,  |   |   |   |   |   |   |
%e A353533    5 |  0,  1,  0,  |   |   |   |   |   |
%e A353533    6 |  0,  2,  1,  0,  |   |   |   |   |
%e A353533    7 |  0,  2,  2,  3,  0,  |   |   |   |
%e A353533    8 |  0,  3,  3,  4,  6,  0,  |   |   |
%e A353533    9 |  0,  3,  5,  5,  8,  9,  0,  |   |
%e A353533   10 |  0,  4,  4,  6, 12, 12, 12,  0,  |
%e A353533   11 |  0,  4,  4, 12,  8, 11, 15, 14,  0
%e A353533 .
%e A353533 T(5,4) = a(1) = 1:
%e A353533 .
%e A353533    4 | . C . . .      Squared distances denoted
%e A353533    3 | . . . . .      as in examples A353532:
%e A353533    2 | D . . . B
%e A353533    1 | . A . . .       AB-BC-CD-DA (around)
%e A353533    y /----------       AC X DB     (across)
%e A353533      x 1 2 3 4 5
%e A353533 .
%e A353533       10-13-5-2
%e A353533       9 X 16
%e A353533 .
%e A353533 T(6,4) = a(2) = 2:
%e A353533 .
%e A353533    4 | . X . . . .     4 | . . X . . .
%e A353533    3 | . . . . . .     3 | . . . . . .
%e A353533    2 | X . . . . X     2 | X . . . . X
%e A353533    1 | . X . . . .     1 | . . X . . .
%e A353533    y /------------     y /------------
%e A353533      x 1 2 3 4 5 6       x 1 2 3 4 5 6
%e A353533 .
%e A353533       17-20-5-2           10-13-8-5
%e A353533       9 X 25              9 X 25
%e A353533 .
%e A353533 T(6,5) = a(3) = 1:
%e A353533 .
%e A353533    5 | . . X . . .
%e A353533    4 | . . . . . .
%e A353533    3 | . . . . . .     10-18-13-5
%e A353533    2 | X . . . . X     16 X 25
%e A353533    1 | . . X . . .
%e A353533    y /------------
%e A353533      x 1 2 3 4 5 6
%e A353533 .
%e A353533 T(9,5) = a(12) = 5;
%e A353533 3 quadrilaterals with diagonals parallel to the grid axes:
%e A353533 .
%e A353533    5 | . X . . . . . . .   5 | . . X . . . . . .   5 | . . . X . . . . .
%e A353533    4 | . . . . . . . . .   4 | . . . . . . . . .   4 | . . . . . . . . .
%e A353533    3 | . . . . . . . . .   3 | . . . . . . . . .   3 | . . . . . . . . .
%e A353533    2 | X . . . . . . . X   2 | X . . . . . . . X   2 | X . . . . . . . X
%e A353533    1 | . X . . . . . . .   1 | . . X . . . . . .   1 | . . . X . . . . .
%e A353533    y /------------------   y /------------------   y /------------------
%e A353533      x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9
%e A353533 .
%e A353533          50-58-10-2              37-45-13-5              26-34-18-10
%e A353533          16 X 64                 16 X 64                 16 X 64
%e A353533 .
%e A353533 The 2 quadrilaterals with diagonals not aligned with the grid axes are the smallest example of this type:
%e A353533 .
%e A353533 .
%e A353533    5 | . X . . . . . . .   5 | . . X . . . . . .
%e A353533    4 | . . . . . . . . X   4 | . . . . . . . . X
%e A353533    3 | . . . . . . . . .   3 | . . . . . . . . .
%e A353533    2 | X . . . . . . . .   2 | X . . . . . . . .
%e A353533    1 | . . X . . . . . .   1 | . . . X . . . . .
%e A353533    y /------------------   y /------------------
%e A353533      x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9
%e A353533 .
%e A353533          45-50-10-5              34-37-13-10
%e A353533          17 X 68                 17 X 68
%e A353533 .
%Y A353533 Cf. A353447, A353532.
%K A353533 nonn,tabl
%O A353533 5,2
%A A353533 _Hugo Pfoertner_ and _Rainer Rosenthal_, May 04 2022