This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353576 #13 Apr 30 2022 22:51:33 %S A353576 0,1,1,4,1,5,1,4,4,12,5,16,1,5,5,16,6,21,1,7,7,24,8,31,1,9,9,32,10,41, %T A353576 1,4,4,12,5,16,4,12,12,32,16,44,5,16,16,44,21,60,7,24,24,68,31,92,9, %U A353576 32,32,92,41,124,1,5,5,16,6,21,5,16,16,44,21,60,6,21,21,60,27,81,8,31,31,92,39,123,10,41,41,124 %N A353576 Arithmetic derivative applied to the prime shadow of the primorial base exp-function: a(n) = A003415(A181819(A276086(n))). %H A353576 Antti Karttunen, <a href="/A353576/b353576.txt">Table of n, a(n) for n = 0..11550</a> %H A353576 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A353576 a(n) = A351942(A276086(n)) = A003415(A328835(n)) = A003415(A181819(A276086(n))). %F A353576 a(n) = A353524(n) * A353577(n). %o A353576 (PARI) %o A353576 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A353576 A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); %o A353576 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A353576 A351942(n) = A003415(A181819(n)); %o A353576 A353576(n) = A351942(A276086(n)); %Y A353576 Cf. A003415, A181819, A276086, A328835, A351942, A353524. %Y A353576 Cf. A060735 (positions of 1's). %Y A353576 Cf. also A353575 which has quite a similar scatter plot, while on the contrast, A353577 has a very different look, explained by the contribution of A353524. %K A353576 nonn,base,look %O A353576 0,4 %A A353576 _Antti Karttunen_, Apr 30 2022