This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353590 #15 Jun 14 2022 06:56:56 %S A353590 0,1,2,3,6,4,5,15,13,7,8,26,30,12,9,10,25,29,45,21,11,14,38,20,17,22, %T A353590 23,16,18,19,61,34,37,55,31,24,27,49,51,54,33,82,35,50,28,32,75,77,59, %U A353590 48,44,53,80,42,36,39,62,88,69,64,71,46,57,84,63,40,41,92,99,90,97,73,95 %N A353590 Lexicographically earliest permutation of the nonnegative integers filling an infinite square array by falling antidiagonals so that the elements on any 2 X 2 square sum to a square. %C A353590 In A337115 the infinite 2D lattice is filled along a square spiral satisfying the same constraint of 2 X 2 squares adding up to squares. %e A353590 The square array starts: %e A353590 0 1 3 5 8 10 14 18 27 32 ... %e A353590 2 6 15 26 25 38 19 49 75 ... %e A353590 4 13 30 29 20 61 51 77 ... %e A353590 7 12 45 17 34 54 59 ... %e A353590 9 21 22 37 33 48 ... %e A353590 11 23 55 82 44 ... %e A353590 16 31 35 53 ... %e A353590 24 50 80 ... %e A353590 28 42 ... %e A353590 36 ... %e A353590 ... %e A353590 a(4) is in the second row and column. It must sum up with a(0) = 0, a(1) = 1 and a(2) = 2 to a square, the smallest possible solution is a(4) = 6. %e A353590 Similarly, a(7) which is on the second row, third column, must sum up with a(1) = 1 (above to the left), a(3) = 3 (above) and a(4) = 6 (to the left) to a square; the smallest solution is a(7) = 15. %o A353590 (PARI) A353590_upto(N, M=Map(), r,c, U=[-1])={vector(N, i, if(r && c, my(s=mapget(M,[r-1,c-1])+mapget(M,[r-1,c])+mapget(M,[r,c-1]), m=sqrtint(s)+1); while(setsearch(U, N=m^2-s)||N<=U[1], m+=1); U=setunion(U, [N]), N=U[1]+=1); mapput(M,[r,c], N); if(c, c--;r++, r=!c=r+1); while(#U>2 && U[2]==U[1]+1, U=U[^1]); N)} %Y A353590 Cf. A000290 (the squares), A337115 (same idea with square spiral instead of array by antidiagonals), A353591 (same idea with primes instead of squares). %K A353590 nonn %O A353590 0,3 %A A353590 _M. F. Hasler_, May 29 2022