cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353591 Lexicographically earliest permutation of the nonnegative integers filling an infinite square array by falling antidiagonals so that the elements on any 2 X 2 square sum to a prime.

This page as a plain text file.
%I A353591 #10 Jun 14 2022 06:57:11
%S A353591 0,1,2,3,4,5,6,9,8,7,10,11,16,17,12,13,14,23,18,25,15,19,22,31,26,29,
%T A353591 21,20,24,35,30,27,28,32,33,34,36,49,40,39,46,38,41,44,37,42,48,43,54,
%U A353591 45,51,52,55,58,47,50,53,57,56,59,69,70,63,66,81,60,61,78,65,67,64,68,73,72,79,76
%N A353591 Lexicographically earliest permutation of the nonnegative integers filling an infinite square array by falling antidiagonals so that the elements on any 2 X 2 square sum to a prime.
%C A353591 In A337116 the infinite 2D lattice is filled along a square spiral satisfying the same constraint of 2 X 2 squares adding up to primes.
%e A353591 The square array starts
%e A353591    0   1   3   6  10  13  19  24  36  42  ...
%e A353591    2   4   9  11  14  22  35  49  48  ...
%e A353591    5   8  16  23  31  30  40  43  ...
%e A353591    7  17  18  26  27  39  54  ...
%e A353591   12  25  29  28  46  45  ...
%e A353591   15  21  32  38  51  ...
%e A353591   20  33  41  52  ...
%e A353591   34  44  55  ...
%e A353591   37  58  ...
%e A353591   47  ...
%e A353591   ...
%e A353591 a(4) is in the second row and column. It must sum up with a(0) = 0, a(1) = 1 and a(2) = 2 to a prime. The smallest possible solution is to reach the prime p = 7 with a(4) = 4.
%e A353591 Similarly, a(7) which is on the second row, third column, must sum up with a(1) = 1 (above to the left), a(3) = 3 (above) and a(4) = 4 (to the left) to a prime; the smallest solution is to reach the prime p = 17 using a(7) = 9.
%o A353591 (PARI) A353591_upto(N, M=Map(), r,c, U=[-1])={vector(N, i, if(r && c, my(s=mapget(M,[r-1,c-1])+mapget(M,[r-1,c])+mapget(M,[r,c-1]), p=nextprime(s+U[1]+1)); while(setsearch(U, N=p-s), p=nextprime(p+1)), N=U[1]+1); mapput(M,[r,c], N); if(c, c--;r++, r=!c=r+1); U=setunion(U, [N]); while(#U>1 && U[2]==U[1]+1, U=U[^1]); N)}
%Y A353591 Cf. A000040 (the primes), A337116 (same idea with square spiral instead of array by antidiagonals), A353590 (same idea with squares instead of primes).
%K A353591 nonn
%O A353591 0,3
%A A353591 _M. F. Hasler_, May 29 2022