This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353594 #5 Jul 30 2023 17:44:37 %S A353594 1,1,1,2,3,1,4,8,5,1,10,25,22,8,1,28,84,95,50,12,1,84,294,406,280,100, %T A353594 17,1,264,1056,1722,1470,700,182,23,1,858,3861,7260,7392,4410,1554, %U A353594 308,30,1,2860,14300,30459,36036,25872,11550,3150,492,38,1 %N A353594 Triangle read by rows, T(n, k) = Sum_{j=0..n} binomial(j, k)*A352687(n, j). %e A353594 Triangle starts: %e A353594 [0] 1; %e A353594 [1] 1, 1; %e A353594 [2] 2, 3, 1; %e A353594 [3] 4, 8, 5, 1; %e A353594 [4] 10, 25, 22, 8, 1; %e A353594 [5] 28, 84, 95, 50, 12, 1; %e A353594 [6] 84, 294, 406, 280, 100, 17, 1; %e A353594 [7] 264, 1056, 1722, 1470, 700, 182, 23, 1; %e A353594 [8] 858, 3861, 7260, 7392, 4410, 1554, 308, 30, 1; %e A353594 [9] 2860, 14300, 30459, 36036, 25872, 11550, 3150, 492, 38, 1; %p A353594 S := (n, k) -> if n = k then 1 elif k = 0 then 0 else %p A353594 binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k)))/(n^2*(n - 1)*(n - k + 1)) fi: %p A353594 T := (n, k) -> add(binomial(j, k)*S(n, j), j = 0..n): %Y A353594 Cf. A352687, A068875 (column 0), A238113 (half row sums) %K A353594 nonn,tabl %O A353594 0,4 %A A353594 _Peter Luschny_, May 02 2022