cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353595 Array read by ascending antidiagonals. Generalized Fibonacci numbers F(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)) / (psi - phi) where phi = (1+sqrt(5))/2 and psi = (1-sqrt(5))/2. F(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 3, 3, 3, 5, 1, 4, 4, 5, 5, 6, 1, 5, 5, 7, 8, 8, 7, 1, 6, 6, 9, 11, 13, 13, 8, 1, 7, 7, 11, 14, 18, 21, 21, 9, 1, 8, 8, 13, 17, 23, 29, 34, 34, 10, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 11, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0

Views

Author

Peter Luschny, May 09 2022

Keywords

Comments

The definition declares the Fibonacci numbers for all integers n and k. It gives the classical Fibonacci numbers as F(0, n) = A000045(n). A different enumeration is given in A352744.

Examples

			Array starts:
n\k 0, 1,  2,  3,  4,  5,  6,   7,   8,   9, ...
--------------------------------------------------------
[0]  0, 1,  1,  2,  3,  5,  8, 13,  21,  34, ... A000045
[1]  1, 1,  2,  3,  5,  8, 13, 21,  34,  55, ... A000045 (shifted once)
[2]  2, 1,  3,  4,  7, 11, 18, 29,  47,  76, ... A000032
[3]  3, 1,  4,  5,  9, 14, 23, 37,  60,  97, ... A104449
[4]  4, 1,  5,  6, 11, 17, 28, 45,  73, 118, ... [4] + A022095
[5]  5, 1,  6,  7, 13, 20, 33, 53,  86, 139, ... [5] + A022096
[6]  6, 1,  7,  8, 15, 23, 38, 61,  99, 160, ... [6] + A022097
[7]  7, 1,  8,  9, 17, 26, 43, 69, 112, 181, ... [7] + A022098
[8]  8, 1,  9, 10, 19, 29, 48, 77, 125, 202, ... [8] + A022099
[9]  9, 1, 10, 11, 21, 32, 53, 85, 138, 223, ... [9] + A022100
		

Crossrefs

Cf. A000045, A000032, A104449, A094588 (main diagonal).
Cf. A352744, A354265 (generalized Lucas numbers).

Programs

  • Julia
    function fibrec(n::Int)
        n == 0 && return (BigInt(0), BigInt(1))
        a, b = fibrec(div(n, 2))
        c = a * (b * 2 - a)
        d = a * a + b * b
        iseven(n) ? (c, d) : (d, c + d)
    end
    function Fibonacci(n::Int, k::Int)
        k == 0 && return BigInt(n)
        k == 1 && return BigInt(1)
        k  < 0 && return (-1)^(k-1)*Fibonacci(-n - 1, 2 - k)
        a, b = fibrec(k - 1)
        a*n + b
    end
    for n in -6:6
        println([n], [Fibonacci(n, k) for k in -6:6])
    end
  • Maple
    f := n -> combinat:-fibonacci(n): F := (n, k) -> n*f(k - 1) + f(k):
    seq(seq(F(n - k, k), k = 0..n), n = 0..11);
    # The next implementation is for illustration only but is not recommended
    # as it relies on floating point arithmetic. Illustrates the case n,k < 0.
    phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
    F := (n, k) -> (psi^(k-1)*(psi + n) - phi^(k-1)*(phi + n)) / (psi - phi):
    for n from -6 to 6 do lprint(seq(simplify(F(n, k)), k = -6..6)) od;
  • Mathematica
    (* Works also for n < 0 and k < 0. Uses a remark from Bill Gosper. *)
    c := I*ArcSinh[1/2] - Pi/2;
    F[n_, k_] := (n Sin[(k - 1) c] - I Sin[k c]) / (I^k Sqrt[5/4]);
    Table[Simplify[F[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm

Formula

Functional equation extends Cassini's theorem:
F(n, k) = (-1)^(k - 1)*F(-n - 1, 2 - k).
F(n, k) = ((1 - phi)^(k - 1)*(1 - phi + n) - phi^(k - 1)*(phi + n))/(1 - 2*phi).
F(n, k) = n*fib(k - 1) + fib(k), where fib(n) are the classical Fibonacci numbers A000045 extended in the usual way for negative n.
F(n, k) - F(n-1, k) = fib(k-1).
F(n, k) = F(n, k-1) + F(n, k-2).
F(n, k) = (n*sin((k - 1)*c) - i*sin(k*c))/(i^k*sqrt(5/4)) where c = i*arcsinh(1/2) - Pi/2, for all n, k in Z. Based on a remark of Bill Gosper.