This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353617 #10 May 01 2022 07:56:29 %S A353617 1,5,2,3,8,1 %N A353617 Decimal expansion of the asymptotic median of the abundancy indices of the positive integers. %C A353617 The abundancy index of a number k is sigma(k)/k = A017665(k)/A017666(k), where sigma is the sum-of-divisors function (A000203). %C A353617 Davenport (1933) proved that sigma(k)/k possesses a continuous distribution function. Therefore, it has an asymptotic median. %C A353617 The asymptotic mean of the abundancy indices is Pi^2/6 = 1.64493... (A013661). %C A353617 Mitsuo Kobayashi (unpublished, 2018) found that the median is in the interval (1.523812, 1.5238175) (see the MathOverflow link). %D A353617 Harold Davenport, Über numeri abundantes, Sitzungsberichte der Preußischen Akademie der Wissenschaften, phys.-math. Klasse, No. 6 (1933), pp. 830-837. %H A353617 Sébastien Palcoux, <a href="https://mathoverflow.net/questions/364542/on-the-density-map-of-the-abundancy-index">On the density map of the abundancy index</a>, MathOverflow, 2020. %e A353617 1.52381... %Y A353617 Cf. A000203, A013661, A017665, A017666, A302991, A353615, A353616. %K A353617 nonn,cons,more %O A353617 1,2 %A A353617 _Amiram Eldar_, Apr 30 2022