This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353618 #26 May 15 2022 07:29:54 %S A353618 3,10,8,35,48,27,119,132,64,112,195,125,279,280,125,20,357,343,253, %T A353618 504,343,539,510,216,552,665,343,91,792,729,923,840,343,533,840,512, %U A353618 476,1035,729,1455,1288,512,224,1485,1331,1504,1575,729,17,1740,1728,799 %N A353618 Three-column array giving list of primitive triples for integer-sided triangles whose angle B = 3*C. %C A353618 This sequence is inspired by the 1st problem proposed during the 46th Czech and Slovak Mathematical Olympiad 1997 (see link). %C A353618 The triples (a, b, c) are displayed in increasing order of side b, and if sides b coincide then in increasing order of the side c. %C A353618 If in triangle ABC, B = 3*C, then the corresponding metric relations between sides are c*a^2= (b-c)^2 * (b+c). <===> a/(b-c) = sqrt(1+b/c). %C A353618 This metric relation is equivalent to a = m(m^2-2k^2), b = k(m^2-k^2), c = k^3, gcd(k,m) = 1 and sqrt(2) * k < m < 2*k; hence every c is a cube number and always c < b. %C A353618 When A <> 3*Pi/7 and A <> Pi/5, table below shows there exist these 3 possible configurations: c < b < a; c < a < b and a < c < b: %C A353618 ---------------------------------------------------------------------------- %C A353618 | A | Pi | decr. | 3*Pi/7 | decr. | Pi/5 | decr. | 0 | %C A353618 --------------------------------------------------------------------------- %C A353618 | B | 0 | incr. | 3*Pi/7 | incr. | 3*Pi/5 | incr. | 3*Pi/4 | %C A353618 ---------------------------------------------------------------------------- %C A353618 | C | 0 | incr. | Pi/7 | incr. | Pi/5 | incr. | Pi/4 | %C A353618 ---------------------------------------------------------------------------- %C A353618 | < | No | c < b < a | c < b=a | c < a < b | c=a < b | a < c < b | No | %C A353618 ---------------------------------------------------------------------------- %C A353618 where 'No' means there is no such corresponding triangle. %C A353618 If (A,B,C) = (3*Pi/7,3*Pi/7,Pi/7) then a = b with c = 2*a*cos(Pi/7), so isosceles ABC is not an integer-sided triangle. %C A353618 If (A,B,C) = (Pi/5,3*Pi/5,Pi/5) then a = c with b = a*(1+sqrt(5))/2, so ABC is not an integer-sided triangle. %H A353618 The IMO Compendium, <a href="https://imomath.com/othercomp/Czs/CzsMO97.pdf">Problem 1</a>, 46th Czech and Slovak Mathematical Olympiad 1997. %H A353618 Mathematical Reflections, <a href="https://www.awesomemath.org/wp-pdf-files/math-reflections/mr-2019-01/mr_6_2018_solutions_2.pdf">Solution to problem O467</a>, Issue 5, 2018, p. 26. %H A353618 <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>. %e A353618 The table begins: %e A353618 3, 10, 8; %e A353618 35, 48, 27; %e A353618 119, 132, 64; %e A353618 112, 195, 125; %e A353618 279, 280, 125; %e A353618 20, 357, 343; %e A353618 253, 504, 343, %e A353618 539, 510, 216; %e A353618 ................ %e A353618 The smallest such triangle is (3,10,8), it is of type a < c < b with 3/(10-8) = sqrt(1+10/8) = 3/2. %e A353618 The 2nd triple (35, 48, 27) is of type c < a < b with 35/(48-27) = sqrt(1+48/27) = 5/3. %e A353618 The 8th triple (539, 510, 216) is the first of type c < b < a with 539/(510-216) = sqrt(1+510/216) = 11/6. %p A353618 for b from 1 to 2500 do %p A353618 for q from 2 to floor((b-1)^(1/3)) do %p A353618 a := (b-q^3) * sqrt(1+b/q^3); %p A353618 if a= floor(a) and q^3 < b and igcd(a,b,q)=1 and (b-q^3) < a and a < b+q^3 then print(a,b,q^3); end if; %p A353618 end do; %p A353618 end do; %o A353618 (PARI) lista(nn) = {for (b = 1, nn, for (q = 2, sqrtnint(b-1, 3), if (issquare(z=1+b/q^3), a = (b-q^3) * sqrtint(numerator(z))/sqrtint(denominator(z)); if ((q^3 < b) && (gcd([a, b, q]) == 1) && ((b-q^3) < a) && (a < b+q^3), print1([a, b, q^3], ", ")););););} \\ _Michel Marcus_, May 11 2022 %o A353618 (Python) %o A353618 from math import gcd %o A353618 from itertools import count, islice %o A353618 from sympy import integer_nthroot %o A353618 def A353618_gen(): # generator of terms %o A353618 for b in count(1): %o A353618 q, c = 2, 8 %o A353618 while c < b: %o A353618 d = (b-c)**2*(b+c) %o A353618 s, t = divmod(d,c) %o A353618 if t == 0: %o A353618 a, r = integer_nthroot(s,2) %o A353618 if r and b-c < a < b+c and gcd(a,b,q) == 1: %o A353618 yield from (a, b, c) %o A353618 c += q*(3*q+3)+1 %o A353618 q += 1 %o A353618 A353618_list = list(islice(A353618_gen(),30)) # _Chai Wah Wu_, May 14 2022 %Y A353618 Cf. A335893 (A < B < C are in arithmetic progression), A343063 (B = 2*C). %K A353618 nonn,tabf %O A353618 1,1 %A A353618 _Bernard Schott_, Apr 30 2022