This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353630 #11 May 05 2022 09:45:42 %S A353630 0,1,1,1,2,1,1,3,0,3,3,3,2,1,3,1,0,1,3,3,2,3,1,3,0,1,1,1,2,1,1,1,2,1, %T A353630 3,1,0,3,3,3,2,3,3,1,0,1,1,1,2,3,1,3,0,3,1,1,2,1,3,1,2,1,3,1,0,1,3,3, %U A353630 2,3,1,3,0,1,1,1,2,1,1,3,0,3,3,3,2,1,3,1,0,1,3,1,0,1,1,1,2,3,1,3,0,3,1,1,2,1 %N A353630 Arithmetic derivative of primorial base exp-function, reduced modulo 4. %H A353630 Antti Karttunen, <a href="/A353630/b353630.txt">Table of n, a(n) for n = 0..65537</a> %H A353630 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A353630 a(n) = A010873(A327860(n)). %F A353630 a(n) = A353493(A276086(n)). %F A353630 a(n) = A010873(A328572(n)*A353640(n)). [Note that all terms of A328572 are odd] %o A353630 (PARI) A353630(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); ((s*m)%4); }; %Y A353630 Cf. A010873, A166486 (parity of terms), A276086, A327860, A328572, A353493, A353640. %Y A353630 Cf. A353631, A353632 (bisections). %Y A353630 Cf. also A353486. %K A353630 nonn,base %O A353630 0,5 %A A353630 _Antti Karttunen_, May 01 2022