This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353632 #11 May 05 2022 10:04:27 %S A353632 0,1,2,1,0,3,2,3,0,3,2,1,0,1,2,1,2,3,0,3,2,3,0,1,2,1,0,1,2,3,2,3,0,3, %T A353632 2,1,0,1,2,1,0,3,2,3,0,3,0,1,2,1,0,1,2,3,0,3,2,3,0,1,0,1,2,1,0,3,2,3, %U A353632 0,3,2,1,0,1,2,1,2,3,0,3,2,3,0,1,2,1,0,1,2,3,2,3,0,3,2,1,0,1,2,1,0,3,2,3,0,1 %N A353632 Even bisection of A353630: Arithmetic derivative of primorial base exp-function, reduced modulo 4, computed for even numbers. %H A353632 Antti Karttunen, <a href="/A353632/b353632.txt">Table of n, a(n) for n = 0..65537</a> %H A353632 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A353632 a(n) = A353630(2*n) = A010873(A327860(2*n)). %F A353632 A000035(a(n)) = A000035(n). %o A353632 (PARI) %o A353632 A353630(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); ((s*m)%4); }; %o A353632 A353632(n) = A353630(n+n); %Y A353632 Even bisection of A353630. A353631 gives the odd bisection. %Y A353632 Cf. A000035, A327860. %Y A353632 Cf. also A353487, A353642. %K A353632 nonn,base %O A353632 0,3 %A A353632 _Antti Karttunen_, May 01 2022