cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353649 Lexicographically earliest sequence of distinct nonnegative integers such that two consecutive terms can be added without carries in balanced ternary.

This page as a plain text file.
%I A353649 #8 May 03 2022 16:51:43
%S A353649 0,1,2,6,3,5,4,8,15,9,14,10,17,7,18,11,16,12,19,50,13,23,45,24,44,25,
%T A353649 47,27,41,28,42,26,43,29,46,30,51,20,52,21,53,22,54,31,59,153,32,48,
%U A353649 33,49,35,55,36,56,34,57,37,68,39,69,38,70,134,40,71,132,72
%N A353649 Lexicographically earliest sequence of distinct nonnegative integers such that two consecutive terms can be added without carries in balanced ternary.
%C A353649 Two integers can be added without carries in balanced ternary if they have no equal nonzero digit at the same position.
%C A353649 This sequence is a permutation of the nonnegative integers with inverse A353650.
%H A353649 Rémy Sigrist, <a href="/A353649/b353649.txt">Table of n, a(n) for n = 0..10000</a>
%H A353649 Wikipedia, <a href="https://en.wikipedia.org/wiki/Balanced_ternary">Balanced ternary</a>
%H A353649 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A353649 The first terms, in decimal and in balanced ternary, are:
%e A353649   n   a(n)  bter(a(n))
%e A353649   --  ----  ----------
%e A353649    0     0           0
%e A353649    1     1           1
%e A353649    2     2          1T
%e A353649    3     6         1T0
%e A353649    4     3          10
%e A353649    5     5         1TT
%e A353649    6     4          11
%e A353649    7     8         10T
%e A353649    8    15        1TT0
%e A353649    9     9         100
%e A353649   10    14        1TTT
%e A353649   11    10         101
%e A353649   12    17        1T0T
%e A353649   13     7         1T1
%e A353649   14    18        1T00
%o A353649 (PARI) ok(u, v) = { while (u && v, my (uu=[0, +1, -1][1+u%3], vv=[0, +1, -1][1+v%3]); if (abs(uu+vv)>1, return (0)); u=(u-uu)/3; v=(v-vv)/3); 1 }
%o A353649 { s=0; v=0; for (n=0, 66, print1 (v", "); s+=2^v; for (w=0, oo, if (!bittest(s,w) && ok(v,w), v=w; break))) }
%Y A353649 Cf. A059095, A109812 (binary analog), A353648, A353650 (inverse).
%K A353649 nonn,look,base
%O A353649 0,3
%A A353649 _Rémy Sigrist_, May 01 2022