A353651 Unique monotonic sequence of positive integers satisfying a(a(n)) = k*(n-1) + 3, where k = 4.
2, 3, 7, 8, 9, 10, 11, 15, 19, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1
Examples
a(6) = 10 because (2*4^1 + 1)/3 < 6 <= (5*4^1 + 1)/3, hence a(6) = 6 + 4^1 = 10; a(9) = 19 because (5*4^1 + 1)/3 < 9 <= (8*4^1 + 1)/3, hence a(9) = 4*(9 - 4^1) - 1 = 19.
Links
Crossrefs
Programs
-
Maple
isA353651 := proc(n) if modp(n,4) = 3 then true; else b4 := convert(3*n-1,base,4) ; if op(-1,b4) = 1 and op(-2,b4) <> 0 then true ; else false; end if; end if; end proc: for n from 2 to 122 do if isA353651(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 05 2022
-
PARI
a(n) = my(n3=3*n, s=logint(n3>>1, 4)<<1); if(n3>>s < 5, n + 1<
Kevin Ryde, Apr 15 2022 (C++) /* program used to generate the b-file */ #includeusing namespace std; int main(){ int cnt1=1, flag=0, cnt2=1, a=2; for(int n=1; n<=10000; n++) { cout<
Formula
For n in the range (2*4^i + 1)/3 < n <= (5*4^i + 1)/3, for i >= 0:
a(n) = n + 4^i.
a(n) = 1 + a(n-1).
Otherwise, for n in the range (5*4^i + 1)/3 < n <= (8*4^i + 1)/3, for i >= 0:
a(n) = 4*(n - 4^i) - 1.
a(n) = 4 + a(n-1).
Comments