cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353651 Unique monotonic sequence of positive integers satisfying a(a(n)) = k*(n-1) + 3, where k = 4.

Original entry on oeis.org

2, 3, 7, 8, 9, 10, 11, 15, 19, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1

Views

Author

Yifan Xie, May 02 2022

Keywords

Comments

Numbers m such that the base-4 representation of (3*m-1) starts with 11 or 12 or 13 or ends with 0.
First differences give a run of 4^i 1's followed by a run of 4^i 4's, for i = 0, 1, 2, ...

Examples

			a(6) = 10 because (2*4^1 + 1)/3 < 6 <= (5*4^1 + 1)/3, hence a(6) = 6 + 4^1 = 10;
a(9) = 19 because (5*4^1 + 1)/3 < 9 <= (8*4^1 + 1)/3, hence a(9) = 4*(9 - 4^1) - 1 = 19.
		

Crossrefs

For other values of k: A080637 (k=2), A003605 (k=3), this sequence (k=4), A353652 (k=5), A353653 (k=6).

Programs

  • Maple
    isA353651 := proc(n)
        if modp(n,4) = 3 then
            true;
        else
            b4 := convert(3*n-1,base,4) ;
            if op(-1,b4) = 1 and op(-2,b4) <> 0  then
                true ;
            else
                false;
            end if;
        end if;
    end proc:
    for n from 2 to 122 do
        if isA353651(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 05 2022
  • PARI
    a(n) = my(n3=3*n, s=logint(n3>>1, 4)<<1); if(n3>>s < 5, n + 1<Kevin Ryde, Apr 15 2022
    (C++)
    /* program used to generate the b-file */
    #include
    using namespace std;
    int main(){
        int cnt1=1, flag=0, cnt2=1, a=2;
        for(int n=1; n<=10000; n++) {
            cout<
    				

Formula

For n in the range (2*4^i + 1)/3 < n <= (5*4^i + 1)/3, for i >= 0:
a(n) = n + 4^i.
a(n) = 1 + a(n-1).
Otherwise, for n in the range (5*4^i + 1)/3 < n <= (8*4^i + 1)/3, for i >= 0:
a(n) = 4*(n - 4^i) - 1.
a(n) = 4 + a(n-1).