This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353655 #11 Dec 26 2024 21:43:48 %S A353655 1,1,1,2,1,2,3,1,2,3,2,2,1,2,3,2,2,3,3,2,1,2,3,2,2,3,3,2,3,3,3,2,3,1, %T A353655 2,3,2,2,3,3,2,3,3,3,2,3,3,3,4,3,4,2,3,3,1,2,3,2,2,3,3,2,3,3,3,2,3,3, %U A353655 3,4,3,4,2,3,3,3,4,3,4,5,3,4,5,2,3,3 %N A353655 Number of terms in the Fibonacci-Lucas representation of n. %C A353655 The Fibonacci-Lucas representation of n, denoted by FL(n), is defined for n>=1 as the sum t(1) + t(2) + ... + t(k), where t(1) is the greatest Fibonacci number (A000045(n), with n>=2) that is <= n, and t(2) is the greatest Lucas number (A000032(n), with n >= 1) that is <= n - t(1), and so on; that is, the greedy algorithm is applied to find successive greatest Fibonacci and Lucas numbers, in alternating order, with sum n. (See Example.) %e A353655 n FL(n) %e A353655 1 = 1 %e A353655 2 = 2 %e A353655 3 = 3 %e A353655 4 = 3 + 1 %e A353655 5 = 5 %e A353655 6 = 5 + 1 %e A353655 33 = 21 + 11 + 1 %e A353655 47 = 34 + 11 + 2 %e A353655 83 = 55 + 18 + 8 + 1 + 1 %t A353655 z = 120; fib = Map[Fibonacci, Range[2, 51]]; %t A353655 luc = Map[LucasL, Range[1, 50]]; %t A353655 t = Map[(n = #; fl = {}; f = 0; l = 0; %t A353655 While[IntegerQ[l], n = n - f - l; %t A353655 f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]]; %t A353655 l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]]; %t A353655 AppendTo[fl, {f, l}]]; %t A353655 {Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]]; %t A353655 u = Take[Map[Last, t], z]; %t A353655 u1 = Map[Length, u] (* A353655 *) %t A353655 t = Map[(n = #; lf = {}; f = 0; l = 0; %t A353655 While[IntegerQ[f], n = n - l - f; %t A353655 l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; %t A353655 f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; %t A353655 AppendTo[lf, {l, f}]]; %t A353655 {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]]; %t A353655 v = Take[Map[Last, t], z]; %t A353655 v1 = Map[Length, v] (* A353656 *) %t A353655 u1 - v1 (* A353657 *) %t A353655 (* _Peter J. C. Moses_ *) %Y A353655 Cf. A000032, A000045, A007895, A116543, A353656, A353657. %K A353655 nonn %O A353655 1,4 %A A353655 _Clark Kimberling_, May 02 2022