A353656 Number of terms in the Lucas-Fibonacci representation of n.
1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4, 3, 3, 2, 3, 4, 3, 3, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4, 3, 3, 2, 3, 4, 3, 3, 4, 4, 3, 2, 3, 4, 3, 3, 4, 4, 3, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4
Offset: 1
Keywords
Examples
n LF(n) 1 = 1 2 = 1 + 1 3 = 3 4 = 4 5 = 4 + 1 6 = 4 + 2 17 = 11 + 5 + 1 66 = 47 + 13 + 4 + 2
Programs
-
Mathematica
z = 120; fib = Map[Fibonacci, Range[2, 51]]; luc = Map[LucasL, Range[1, 50]]; t = Map[(n = #; fl = {}; f = 0; l = 0; While[IntegerQ[l], n = n - f - l; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]]; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]]; AppendTo[fl, {f, l}]]; {Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]]; u = Take[Map[Last, t], z]; u1 = Map[Length, u] (* A353655 *) t = Map[(n = #; lf = {}; f = 0; l = 0; While[IntegerQ[f], n = n - l - f; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; AppendTo[lf, {l, f}]]; {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]]; v = Take[Map[Last, t], z]; v1 = Map[Length, v] (* A353656 *) u1 - v1 (* A353657 *) (* Peter J. C. Moses, May 04 2022 *)
Comments