This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353657 #11 Dec 26 2024 21:43:38 %S A353657 0,-1,0,1,-1,0,2,-1,0,1,1,0,-1,0,0,0,-1,2,1,0,-1,-1,1,-1,-2,1,0,-2,2, %T A353657 1,1,0,0,-1,-1,-1,0,-1,-1,0,-1,1,0,-1,-1,0,2,1,2,1,1,0,0,-1,-1,-1,-1, %U A353657 -1,-1,1,0,-2,0,0,-1,-2,0,1,0,0,0,1,-2,-1,0,2,2 %N A353657 a(n) = A353655(n)- A353656(n). %C A353657 Conjectures: a(n) = 0 for infinitely many n, and (a(n)) is unbounded below and above. %e A353657 a(7) because A353655(u) = 3 and A353656(7) = 1, since the Fibonacci-Lucas representation of 7 is FL(7) = 5 + 1 + 1, and the Lucas-Fibonacci representation of 7 is LF(7) = 7. %t A353657 z = 120; fib = Map[Fibonacci, Range[2, 51]]; %t A353657 luc = Map[LucasL, Range[1, 50]]; %t A353657 t = Map[(n = #; fl = {}; f = 0; l = 0; %t A353657 While[IntegerQ[l], n = n - f - l; %t A353657 f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]]; %t A353657 l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]]; %t A353657 AppendTo[fl, {f, l}]]; %t A353657 {Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]]; %t A353657 u = Take[Map[Last, t], z]; %t A353657 u1 = Map[Length, u] (* A353655 *) %t A353657 t = Map[(n = #; lf = {}; f = 0; l = 0; %t A353657 While[IntegerQ[f], n = n - l - f; %t A353657 l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; %t A353657 f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; %t A353657 AppendTo[lf, {l, f}]]; %t A353657 {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]]; %t A353657 v = Take[Map[Last, t], z]; %t A353657 v1 = Map[Length, v] (* A353656 *) %t A353657 u1 - v1 (* A353657 *) %t A353657 (* _Peter J. C. Moses_ *) %Y A353657 Cf. A000032, A000045, A007895, A116543, A353655, A353656, A353658, A353659. %K A353657 sign %O A353657 1,7 %A A353657 _Clark Kimberling_, May 04 2022