A353658 Rectangular array by antidiagonals: row k lists the numbers whose Fibonacci-Lucas representation has k terms.
1, 2, 4, 3, 6, 7, 5, 9, 10, 49, 8, 11, 15, 51, 80, 13, 12, 18, 70, 83, 549, 21, 14, 19, 72, 114, 551, 889, 34, 16, 23, 77, 117, 570, 892, 6094, 55, 17, 26, 79, 125, 572, 923, 6096, 9861, 89, 20, 27, 82, 128, 782, 926, 6115, 9864, 67589
Offset: 1
Examples
Northwest corner: 1 2 3 5 8 13 21 34 4 6 9 11 12 14 16 17 7 10 15 18 19 23 26 27 49 51 70 72 77 79 82 88 80 83 114 117 125 128 133 143 549 551 570 572 782 784 803 805 889 892 923 926 1266 1269 1300 1303 6094 6096 6115 6117 6327 6329 6348 6350
Programs
-
Mathematica
fib = Map[Fibonacci, Range[2, 51]]; luc = Map[LucasL, Range[1, 50]]; t = Map[(n = #; fl = {}; f = 0; l = 0; While[IntegerQ[l], n = n - f - l; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]]; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]]; AppendTo[fl, {f, l}]]; {Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[8000]]; Length[t]; u = Table[Length[t[[n]][[2]]], {n, 1, Length[t]}]; Take[u, 150] TableForm[Table[Flatten[Position[u, k]], {k, 1, 8}]] w[k_, n_] := Flatten[Position[u, k]][[n]] Table[w[n - k + 1, k], {n, 8}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, May 04 2022 *)
Comments