This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353659 #17 Jan 21 2023 03:01:00 %S A353659 1,3,2,4,5,15,7,6,17,25,11,8,22,28,172,18,9,24,36,174,279,29,10,27,39, %T A353659 193,282,1913,47,12,33,44,195,313,1915,3096,76,13,35,54,248,316,1934, %U A353659 3099,21221,123,14,38,57,250,402,1936,3130,21223,34337 %N A353659 Rectangular array read by downwards antidiagonals: row k lists the numbers whose Lucas-Fibonacci representation has k terms. %C A353659 The Lucas-Fibonacci representation of n, denoted by LF(n), is defined for n>=1 as the sum t(1) + t(2) + ... + t(k), where t(1) is the greatest Lucas number (A000032(n), with n >= 1) that is <= n, and t(2) is the greatest Fibonacci number (A000045(n), with n >= 2) that is <= n - t(1), and so on; that is, the greedy algorithm is applied to find successive greatest Lucas and Fibonacci numbers, in alternating order, with sum n. Every positive integer occurs exactly once in this array. %e A353659 Northwest corner: %e A353659 1 3 4 7 11 18 29 47 76 123 %e A353659 2 5 6 8 9 10 12 13 14 16 %e A353659 15 17 22 24 27 33 35 38 40 41 %e A353659 25 28 36 39 44 54 57 62 65 66 %e A353659 172 174 193 195 248 250 269 271 276 278 %e A353659 279 282 313 316 402 405 436 439 447 450 %e A353659 1913 1915 1934 1936 2146 2148 2167 2169 2756 2758 %e A353659 3096 3099 3130 3133 3473 3476 3507 3510 4460 4463 %t A353659 fib = Map[Fibonacci, Range[2, 51]]; %t A353659 luc = Map[LucasL, Range[1, 50]]; %t A353659 t = Map[(n = #; lf = {}; f = 0; l = 0; %t A353659 While[IntegerQ[f], n = n - l - f; %t A353659 l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; %t A353659 f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; %t A353659 AppendTo[lf, {l, f}]]; %t A353659 {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[50000]]; %t A353659 Length[t]; %t A353659 u = Table[Length[t[[n]][[2]]], {n, 1, Length[t]}]; %t A353659 Take[u, 150] %t A353659 TableForm[Table[Flatten[Position[u, k]], {k, 1, 11}]]; %t A353659 w[k_, n_] := Flatten[Position[u, k]][[n]] %t A353659 Table[w[n - k + 1, k], {n, 11}, {k, n, 1, -1}] // Flatten %t A353659 (* _Peter J. C. Moses_, May 04 2022 *) %Y A353659 Cf. A000032, A000045, A007895, A116543, A353655, A353656, A353658. %K A353659 nonn,tabl %O A353659 1,2 %A A353659 _Clark Kimberling_, May 04 2022