This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353689 #32 May 11 2022 14:34:01 %S A353689 1,5,18,53,139,333,748,1592,3246,6379,12152,22524,40764,72213,125505, %T A353689 214378,360473,597450,977196,1578852,2522157,3986658,6239619,9675801, %U A353689 14874445,22679693,34314378,51539173,76875314,113913453,167741728,245534597,357361857,517293186 %N A353689 Convolution of A000716 and the positive integers. %F A353689 From _Vaclav Kotesovec_, May 11 2022: (Start) %F A353689 G.f.: 1/(1-x)^2 * Product_{k>=1} 1/(1-x^k)^3. %F A353689 a(n) ~ exp(Pi*sqrt(2*n)) / (2^(5/2) * Pi^2 * sqrt(n)). (End) %p A353689 a:= proc(n) option remember; `if`(n=0, 1, add( %p A353689 a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n) %p A353689 end: %p A353689 seq(a(n), n=0..35); # _Alois P. Heinz_, May 11 2022 %t A353689 nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, May 11 2022 *) %o A353689 (PARI) lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ _Michel Marcus_, May 09 2022 %Y A353689 Partial sums of A210843. %Y A353689 Column 1 of A353690. %K A353689 nonn %O A353689 0,2 %A A353689 _Omar E. Pol_, May 08 2022