This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353690 #38 Dec 26 2024 21:44:30 %S A353690 1,5,18,5,53,25,139,90,333,265,14,748,695,70,1592,1665,252,3246,3740, %T A353690 742,6379,7960,1946,30,12152,16230,4662,150,22524,31895,10472,540, %U A353690 40764,60760,22288,1590,72213,112620,45444,4170,125505,203820,89306,9990,55,214378,361065,170128,22440,275 %N A353690 Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A353689 multiplied by A000330(k), and the first element of column k is in row A000217(k). %C A353690 The alternating sum of the n-th row equals A175254(n), the volume of the stepped pyramid with n levels described in A245092, also the n-th term of the convolution of A000203 and A000027. %C A353690 Column k is the partial sums of the k-th column of the triangle A249120. %C A353690 Another triangle with the same row lengths and whose alternating row sums give A175254 is A262612. %F A353690 A175254(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k). %e A353690 Triangle begins: %e A353690 1; %e A353690 5; %e A353690 18, 5; %e A353690 53, 25; %e A353690 139, 90; %e A353690 333, 265, 14; %e A353690 748, 695, 70; %e A353690 1592, 1665, 252; %e A353690 3246, 3740, 742; %e A353690 6379, 7960, 1946, 30; %e A353690 12152, 16230, 4662, 150; %e A353690 22524, 31895, 10472, 540; %e A353690 40764, 60760, 22288, 1590; %e A353690 72213, 112620, 45444, 4170; %e A353690 125505, 203820, 89306, 9990, 55; %e A353690 214378, 361065, 170128, 22440, 275; %e A353690 360473, 627525, 315336, 47760, 990; %e A353690 597450, 1071890, 570696, 97380, 2915; %e A353690 977196, 1802365, 1010982, 191370, 7645; %e A353690 1578852, 2987250, 1757070, 364560, 18315; %e A353690 2522157, 4885980, 3001292, 675720, 41140, 91; %e A353690 ... %e A353690 For n = 6 we have that A175254(6) is equal to [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 333 - 265 + 14 = 82, equaling A175254(6). %Y A353690 Column 1 is A353689. %Y A353690 Row n has length A003056(n). %Y A353690 Column k starts in row A000217(k). %Y A353690 The first element in column k is A000330(k). %Y A353690 Alternating row sums give A175254. %Y A353690 Cf. A000203, A000716, A196020, A210843, A236104, A237593, A245092, A249120, A252117, A262612. %K A353690 nonn,tabf %O A353690 1,2 %A A353690 _Omar E. Pol_, May 04 2022