cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353692 a(n) is the least number k > n such that uh(k)/uh(n) is an integer, where uh(n) is the harmonic mean of the unitary divisors of n, or -1 if no such k exists.

Original entry on oeis.org

6, 20, 45, 72, 30, 60, 42, 272, 756, 120, 66, 18, 78, 140, 1890, 720, 102, 180, 114, 24, 315, 220, 138, 360, 150, 260, 3321, 504, 174, 7560, 186, 1440, 495, 340, 210, 52416, 222, 380, 585, 1360, 246, 420, 258, 792, 1512, 460, 282, 720, 294, 600, 765, 936, 318
Offset: 1

Views

Author

Amiram Eldar, May 04 2022

Keywords

Examples

			a(2) = 20 since 20 is the least number > 2 such that uh(20)/uh(2) = (8/3)/(4/3) = 2 is an integer.
		

Crossrefs

Similar sequences: A069789, A069797, A069805, A353691.

Programs

  • Mathematica
    uh[n_] := Module[{f = FactorInteger[n]}, n*2^Length[f]/Times @@ (1 + Power @@@ f)]; a[n_] := Module[{k = n + 1, uhn = uh[n]}, While[!IntegerQ[uh[k]/uhn], k++]; k]; Array[a, 30]

Formula

a(p) = 6*p for a prime p > 3.