This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353698 #10 Jan 02 2023 21:54:42 %S A353698 0,1,0,1,0,1,1,1,0,2,0,2,1,2,0,2,1,2,1,1,1,4,1,2,1,2,1,3,0,3,2,2,1,5, %T A353698 0,1,2,5,1,4,0,3,3,2,1,4,2,3,2,2,0,5,1,4,2,2,3,6,1,2,2,5,1,4,0,4,3,3, %U A353698 1,6,2,3,4,4,2,4,1,4,2,3,1,8,2,4,2,4,2,5,2,4,2 %N A353698 Number of integer partitions of n whose product equals their length. %H A353698 Andrew Howroyd, <a href="/A353698/b353698.txt">Table of n, a(n) for n = 0..10000</a> %e A353698 The a(n) partitions for selected n (A..H = 10..17): %e A353698 n=9: n=21: n=27: n=33: %e A353698 --------------------------------------------------------------------------- %e A353698 51111 B1111111111 E1111111111111 H1111111111111111 %e A353698 321111 72111111111111 921111111111111111 B211111111111111111111 %e A353698 531111111111111 54111111111111111111 831111111111111111111111 %e A353698 4221111111111111 5511111111111111111111111 %e A353698 333111111111111111111111111 %t A353698 Table[Length[Select[IntegerPartitions[n],Times@@#==Length[#]&]],{n,0,30}] %o A353698 (PARI) a(r,m=r,p=1,k=0) = {(p==k+r) + sum(m=2, min(m, (k+r)\p), self()(r-m, min(m,r-m), p*m, k+1))} \\ _Andrew Howroyd_, Jan 02 2023 %Y A353698 The LHS (product of parts) is counted by A339095, rank statistic A003963. %Y A353698 The RHS (length) is counted by A008284, rank statistic A001222. %Y A353698 These partitions are ranked by A353699. %Y A353698 A266477 counts partitions by product of multiplicities, rank stat A005361. %Y A353698 A353504 counts partitions w/ product less than product of multiplicities. %Y A353698 A353505 counts partitions w/ product greater than product of multiplicities. %Y A353698 A353506 counts partitions w/ prod equal to prod of mults, ranked by A353503. %Y A353698 Cf. A000041, A002033, A098859, A114640, A181819, A225485, A266499, A319000, A325280, A353398, A353507. %K A353698 nonn %O A353698 0,10 %A A353698 _Gus Wiseman_, May 19 2022 %E A353698 Terms a(61) and beyond from _Andrew Howroyd_, Jan 02 2023