This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353699 #9 May 20 2022 23:04:08 %S A353699 2,6,20,36,56,176,240,416,864,1088,1344,2432,3200,5888,8448,14848, %T A353699 23040,31744,35840,39936,75776,167936,208896,331776,352256,450560, %U A353699 516096,770048,802816,933888,1736704,2457600,3866624,4259840,4521984,7995392,12976128,17563648 %N A353699 Heinz numbers of integer partitions whose product equals their length. %C A353699 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A353699 The terms together with their prime indices begin: %e A353699 2: {1} %e A353699 6: {1,2} %e A353699 20: {1,1,3} %e A353699 36: {1,1,2,2} %e A353699 56: {1,1,1,4} %e A353699 176: {1,1,1,1,5} %e A353699 240: {1,1,1,1,2,3} %e A353699 416: {1,1,1,1,1,6} %e A353699 864: {1,1,1,1,1,2,2,2} %e A353699 1088: {1,1,1,1,1,1,7} %e A353699 1344: {1,1,1,1,1,1,2,4} %e A353699 2432: {1,1,1,1,1,1,1,8} %e A353699 3200: {1,1,1,1,1,1,1,3,3} %e A353699 5888: {1,1,1,1,1,1,1,1,9} %e A353699 8448: {1,1,1,1,1,1,1,1,2,5} %e A353699 14848: {1,1,1,1,1,1,1,1,1,10} %e A353699 23040: {1,1,1,1,1,1,1,1,1,2,2,3} %e A353699 31744: {1,1,1,1,1,1,1,1,1,1,11} %e A353699 35840: {1,1,1,1,1,1,1,1,1,1,3,4} %e A353699 39936: {1,1,1,1,1,1,1,1,1,1,2,6} %e A353699 75776: {1,1,1,1,1,1,1,1,1,1,1,12} %t A353699 Select[Range[1000],Times@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]^k]==PrimeOmega[#]&] %Y A353699 Length is A001222, counted by A008284, distinct A001221. %Y A353699 Product is A003963, counted by A339095, firsts A318871. %Y A353699 A similar sequence is A353503, counted by A353506. %Y A353699 These partitions are counted by A353698. %Y A353699 A005361 gives product of signature, firsts A353500 (sorted A085629). %Y A353699 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353699 A124010 gives prime signature, sorted A118914. %Y A353699 A181819 gives prime shadow, with an inverse A181821. %Y A353699 A353394 gives product of shadows of prime indices, firsts A353397. %Y A353699 Cf. A000720, A003586, A114640, A182850, A320325, A325131, A325755, A353399, A353507. %K A353699 nonn %O A353699 1,1 %A A353699 _Gus Wiseman_, May 19 2022