This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353701 #32 Jan 11 2023 11:08:33 %S A353701 4,18,2,18,4,242,2,18,4,242,2,98,4,18,2,578,4,578,2,242,242,98,2,18, %T A353701 98,18,2,722,4,98,2,162 %N A353701 Denominator of squared radius of smallest circle passing through exactly n integral points. %C A353701 Schinzel proved such a circle always exists, and the square of the radius of a circle passing through 3 integral points is always rational so the sequence is well-defined. %H A353701 S. S. Lacerda, <a href="https://gist.github.com/SofiaSL/eca994e57e519ec16228fa754dd84fd1">schinzel.py</a> %H A353701 E. Pegg, <a href="https://demonstrations.wolfram.com/LatticeCircles/">Lattice Circles</a> %H A353701 Jim Randell, <a href="https://github.com/enigmatic-code/lattice_circles">A collection of minimal radius lattice circles</a> (github) %H A353701 C. Schinzel, <a href="http://doi.org/10.5169/seals-34627">Sur l'existence d'un cercle passant par un nombre donné de points aux coordonnées entières</a>, Enseignement Math, vol. 4, pp. 71-72, 1958. %e A353701 For n=3 a minimal circle is (x - 1/6)^2 + (y - 1/6)^2 = 25/18. %Y A353701 Numerators are A353700. %K A353701 nonn,nice,hard,frac %O A353701 2,1 %A A353701 _Sofia Lacerda_, May 04 2022 %E A353701 Data corrected by _Sean A. Irvine_, Jul 19 2022 %E A353701 a(29)-a(33) from _Jim Randell_, Jan 10 2023