This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353703 #19 May 09 2023 08:56:21 %S A353703 6,22,66,202,222,282,434,454,474,494,555,595,838,858,969,1001,1551, %T A353703 1771,3333,3553,5335,6006,6226,6886,8778,9889,12921,14541,15051,16261, %U A353703 16761,17171,18681,19491,20202,20602,20802,20902,24142,24242,24542,28282,28482,30003 %N A353703 Palindromes (A002113) in A157037. %C A353703 Intersection of A002113 and A157037. %H A353703 Robert Israel, <a href="/A353703/b353703.txt">Table of n, a(n) for n = 1..10000</a> %e A353703 22 = A002113(12) and 22 = A157037(3), so 22 is a term. %e A353703 66 = A002113(16) and 22 = A157037(8), so 66 is a term. %p A353703 filter:= proc(n) local t; %p A353703 isprime(n*add(t[2]/t[1], t=ifactors(n)[2])) %p A353703 end proc: %p A353703 digrev:= proc(n) local L,i; %p A353703 L:= convert(n,base,10); %p A353703 add(L[-i]*10^(i-1),i=1..nops(L)) %p A353703 end proc: %p A353703 N:= 100: # for a(1) to a(N) %p A353703 Res:= 6: count:= 1: %p A353703 for d from 2 while count < N do %p A353703 if d::even then %p A353703 m:= d/2; %p A353703 for n from 10^(m-1) to 10^m-1 while count < N do %p A353703 v:= n*10^m + digrev(n); %p A353703 if filter(v) then Res:= Res,v; count:= count+1 fi; %p A353703 od %p A353703 else %p A353703 m:= (d-1)/2; %p A353703 for n from 10^(m-1) to 10^m-1 while count < N do %p A353703 for y from 0 to 9 while count < N do %p A353703 v:= n*10^(m+1)+y*10^m+digrev(n); %p A353703 if filter(v) then Res:= Res,v; count:= count+1 fi; %p A353703 od od: %p A353703 fi %p A353703 od: %p A353703 Res; # _Robert Israel_, May 09 2023 %t A353703 d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[30003], PalindromeQ[#] && PrimeQ[d[#]] &] (* _Amiram Eldar_, May 09 2022 *) %o A353703 (Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; pal:=func<n|Intseq(n) eq Reverse(Intseq(n))>; [n:n in [2..30003]| pal(n) and IsPrime(Floor(f(n)))]; %o A353703 (PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 %o A353703 isok(m) = my(d); isprime(ad(m)) && (d=digits(m)) && (d==Vecrev(d)); \\ _Michel Marcus_, May 09 2022 %o A353703 (Python) %o A353703 from itertools import chain, count, islice %o A353703 from sympy import isprime, factorint %o A353703 def A353703_gen(): # generator of terms %o A353703 return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), chain.from_iterable(chain((int((s:=str(d))+s[-2::-1]) for d in range(10**l,10**(l+1))), (int((s:=str(d))+s[::-1]) for d in range(10**l,10**(l+1)))) for l in count(0))) %o A353703 A353703_list = list(islice(A353703_gen(),20)) # _Chai Wah Wu_, Jun 23 2022 %Y A353703 Cf. A002113, A003415, A157037. %K A353703 nonn,base %O A353703 1,1 %A A353703 _Marius A. Burtea_, May 08 2022