cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353704 Repdigit numbers (A010785) in A157037.

This page as a plain text file.
%I A353704 #21 Jun 23 2022 12:30:49
%S A353704 6,22,66,222,555,3333,55555,66666,111111,7777777,2222222222,
%T A353704 5555555555,55555555555555555,2222222222222222222222222,
%U A353704 55555555555555555555555555,66666666666666666666666666,66666666666666666666666666666666666,6666666666666666666666666666666666666666666
%N A353704 Repdigit numbers (A010785) in A157037.
%C A353704 Intersection of A010785 and A157037.
%C A353704 No term contains the digits 4, 8 or 9.
%e A353704 22 = A010785(11) and 22 = A157037(3), so 22 is a term.
%e A353704 66 = A010785(15) and 22 = A157037(8), so 66 is a term.
%t A353704 d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Sort[Flatten[Outer[Times, Range[1, 9], (10^Range[43] - 1)/9]]], PrimeQ[d[#]] &] (* _Amiram Eldar_, May 09 2022 *)
%o A353704 (Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>;  [n:n in [(k - 9*Floor((k-1)/9))*(10^Floor((k+8)/9) - 1) div 9:k in [1..400]]| IsPrime(Floor(f(n))) ];
%o A353704 (PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
%o A353704 isok(m) = isprime(ad(m)) && (#Set(digits(m)) == 1); \\ _Michel Marcus_, May 09 2022
%o A353704 (Python)
%o A353704 from itertools import count, islice
%o A353704 from sympy import isprime, factorint
%o A353704 def A353704_gen(): # generator of terms
%o A353704     return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), (d*(10**l-1)//9 for l in count(1) for d in (1,2,3,5,6,7)))
%o A353704 A353704_list = list(islice(A353704_gen(),10)) # _Chai Wah Wu_, Jun 23 2022
%Y A353704 Cf. A002113, A003415, A010785, A157037.
%K A353704 nonn,base
%O A353704 1,1
%A A353704 _Marius A. Burtea_, May 08 2022