This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353715 #33 Jul 07 2022 08:11:36 %S A353715 1,3,6,12,11,19,28,44,49,23,46,104,69,15,58,113,79,142,161,51,86,77, %T A353715 43,54,92,107,167,156,90,102,61,155,226,109,157,242,354,277,63,234, %U A353715 449,279,126,233,387,286,125,481,410,63,357,456,143,87,240,171,95,372,419,207,348,433,231,334,313,183,462,840,531,63,492,961,543,254,992,783,127 %N A353715 a(n) = b(n)+b(n+1), where b is A353709. %C A353715 Created in an attempt to show that every number appears in A353709. For example, if one could show that the present sequence had a subsequence which was divisible by ever-increasing powers of 2, the desired result would follow. See A353724, A353725, A353726, A353727 for more about this topic. %H A353715 N. J. A. Sloane, <a href="/A353715/b353715.txt">Table of n, a(n) for n = 0..16383</a> %H A353715 Walter Trump, <a href="/A353715/a353715.png">Log-log plot of first 2^24 terms.</a> Green dots (which overwrite the black dots) indicate terms a(n) which are divisible by 64. %p A353715 g:= proc() false end: t:= 2: %p A353715 b:= proc(n) option remember; global t; local k; if n<2 then n %p A353715 else for k from t while g(k) or Bits[And](k, b(n-2))>0 %p A353715 or Bits[And](k, b(n-1))>0 do od; g(k):=true; %p A353715 while g(t) do t:=t+1 od; k fi %p A353715 end: %p A353715 a:= n-> b(n)+b(n+1): %p A353715 seq(a(n), n=0..100); # _Alois P. Heinz_, May 09 2022 %t A353715 g[_] = False ; t = 2; %t A353715 b[n_] := b[n] = Module[{k}, If[n < 2, n, %t A353715 For[k = t, g[k] || BitAnd[k, b[n-2]] > 0 || %t A353715 BitAnd[k, b[n-1]] > 0, k++]; g[k] = True; %t A353715 While[g[t], t = t+1]; k]]; %t A353715 a[n_] := b[n] + b[n+1]; %t A353715 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jul 07 2022, after _Alois P. Heinz_ *) %o A353715 (Python) %o A353715 from itertools import count, islice %o A353715 def A353715_gen(): # generator of terms %o A353715 s, a, b, c, ab = {0,1}, 0, 1, 2, 1 %o A353715 yield 1 %o A353715 while True: %o A353715 for n in count(c): %o A353715 if not (n & ab or n in s): %o A353715 yield b+n %o A353715 a, b = b, n %o A353715 ab = a|b %o A353715 s.add(n) %o A353715 while c in s: %o A353715 c += 1 %o A353715 break %o A353715 A353715_list = list(islice(A353715_gen(),30)) # _Chai Wah Wu_, May 11 2022 %Y A353715 Cf. A353709, A353724, A353725, A353726, A353727. %K A353715 base,nonn %O A353715 0,2 %A A353715 _N. J. A. Sloane_, May 09 2022