cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353736 Number of n-digit terms in A353007.

This page as a plain text file.
%I A353736 #14 Jul 14 2022 15:03:14
%S A353736 5,21,122,765,5000,34581,249152,1843485,14184320,111117141,890892032,
%T A353736 7338139005,60554071040,518102719701,4409318285312,38356828343325,
%U A353736 341939662684160,2933245707834261,28085287524564992,229163829314312445,2425706018857287680,18151248585662332821
%N A353736 Number of n-digit terms in A353007.
%C A353736 From _Bernard Schott_, Jul 14 2022: (Start)
%C A353736 Conjecture 1: lim_{n->oo} a(2n+1)/a(2n-1) = 100.
%C A353736 Conjecture 2: lim_{n->oo} a(2n+2)/a(2n) = 81.
%C A353736 These conjectures are the same as for A353735. (End)
%H A353736 Michael S. Branicky, <a href="/A353736/b353736.txt">Table of n, a(n) for n = 1..1002</a>
%e A353736 There are five 1-digit terms in A353007: 0, 2, 4, 6, 8. Thus, a(1) = 5.
%o A353736 (Python)
%o A353736 def isA353007(n):
%o A353736     digits = list(map(int, str(n)))
%o A353736     return all(digits.count(d)%2 != d%2 for d in set(digits))
%o A353736 def a(n):
%o A353736     start = 0 if n == 1 else 10**(n-1)
%o A353736     return sum(1 for i in range(start, 10**n) if isA353007(i))
%o A353736 print([a(n) for n in range(1, 7)]) # _Michael S. Branicky_, May 06 2022
%Y A353736 Cf. A333369, A353007, A353735.
%K A353736 nonn,base
%O A353736 1,1
%A A353736 _Michael S. Branicky_, May 06 2022