This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353736 #14 Jul 14 2022 15:03:14 %S A353736 5,21,122,765,5000,34581,249152,1843485,14184320,111117141,890892032, %T A353736 7338139005,60554071040,518102719701,4409318285312,38356828343325, %U A353736 341939662684160,2933245707834261,28085287524564992,229163829314312445,2425706018857287680,18151248585662332821 %N A353736 Number of n-digit terms in A353007. %C A353736 From _Bernard Schott_, Jul 14 2022: (Start) %C A353736 Conjecture 1: lim_{n->oo} a(2n+1)/a(2n-1) = 100. %C A353736 Conjecture 2: lim_{n->oo} a(2n+2)/a(2n) = 81. %C A353736 These conjectures are the same as for A353735. (End) %H A353736 Michael S. Branicky, <a href="/A353736/b353736.txt">Table of n, a(n) for n = 1..1002</a> %e A353736 There are five 1-digit terms in A353007: 0, 2, 4, 6, 8. Thus, a(1) = 5. %o A353736 (Python) %o A353736 def isA353007(n): %o A353736 digits = list(map(int, str(n))) %o A353736 return all(digits.count(d)%2 != d%2 for d in set(digits)) %o A353736 def a(n): %o A353736 start = 0 if n == 1 else 10**(n-1) %o A353736 return sum(1 for i in range(start, 10**n) if isA353007(i)) %o A353736 print([a(n) for n in range(1, 7)]) # _Michael S. Branicky_, May 06 2022 %Y A353736 Cf. A333369, A353007, A353735. %K A353736 nonn,base %O A353736 1,1 %A A353736 _Michael S. Branicky_, May 06 2022