cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353741 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.

This page as a plain text file.
%I A353741 #12 Jan 05 2024 13:26:29
%S A353741 1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,2,2,1,1,1,1,2,1,2,1,2,1,
%T A353741 1,2,1,1,1,2,1,2,1,3,1,1,3,1,3,1,1,1,1,2,1,2,1,3,2,1,3,1,1,3,2,2,2,1,
%U A353741 1,1,1,2,1,2,1,3,2,2,3,1,1,4,2,2,1,4,1,1,1,3,2
%N A353741 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with product k, all zeros removed.
%C A353741 Warning: There are certain internal "holes" in A339095 that are removed in this sequence.
%e A353741 Triangle begins:
%e A353741   1
%e A353741   1
%e A353741   1 1
%e A353741   1 1 1
%e A353741   1 1 1 2
%e A353741   1 1 1 2 1 1
%e A353741   1 1 1 2 1 2 2 1
%e A353741   1 1 1 2 1 2 1 2 1 1 2
%e A353741   1 1 1 2 1 2 1 3 1 1 3 1 3 1
%e A353741   1 1 1 2 1 2 1 3 2 1 3 1 1 3 2 2 2 1
%e A353741   1 1 1 2 1 2 1 3 2 2 3 1 1 4 2 2 1 4 1 1 1 3 2
%e A353741 Row n = 7 counts the following partitions:
%e A353741   1111111   211111   31111   4111    511   61     7   421    331   52   43
%e A353741                              22111         3211       2221              322
%t A353741 DeleteCases[Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,10},{k,1,2^n}],0,2]
%Y A353741 Row sums are A000041.
%Y A353741 Row lengths are A034891.
%Y A353741 A partial transpose is A319000.
%Y A353741 The full version with zeros is A339095, rank statistic A003963.
%Y A353741 A008284 counts partitions by sum, strict A116608.
%Y A353741 A225485 counts partitions by frequency depth.
%Y A353741 A266477 counts partitions by product of multiplicities, ranked by A005361.
%Y A353741 Cf. A002033, A266499, A325242, A325268, A325280, A353503, A353506, A353698.
%K A353741 nonn,tabf,less
%O A353741 0,11
%A A353741 _Gus Wiseman_, May 20 2022