This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353745 #13 Jan 20 2025 16:22:08 %S A353745 0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1, %T A353745 1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,1,2,1,1,1,1,2, %U A353745 1,1,1,2,1,1,2,2,1,1,1,2,1,1,1,2,1,1,1,2,1,3,1,2,1,1,1,2,1,2,2,1,1,1,1,2,1 %N A353745 Number of runs in the ordered prime signature of n. %C A353745 First differs from A071625 at a(90) = 3. %C A353745 First differs from A331592 at a(90) = 3. %C A353745 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization. %H A353745 Antti Karttunen, <a href="/A353745/b353745.txt">Table of n, a(n) for n = 1..65537</a> %H A353745 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a> %H A353745 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %e A353745 The prime indices of 630 are {1,2,2,3,4}, with multiplicities {1,2,1,1}, with runs {{1},{2},{1,1}}, so a(630) = 3. %t A353745 Table[Length[Split[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}] %o A353745 (PARI) %o A353745 pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); }; %o A353745 runlengths(lista) = if(!#lista, lista, if(1==#lista, List([1]), my(runs=List([]), rl=1); for(i=1, #lista, if((i < #lista) && (lista[i]==lista[i+1]), rl++, listput(runs,rl); rl=1)); (runs))); %o A353745 A353745(n) = #runlengths(runlengths(pis_to_runs(n))); \\ _Antti Karttunen_, Jan 20 2025 %Y A353745 Positions of first appearances are A354233. %Y A353745 A001222 counts prime factors, distinct A001221. %Y A353745 A005361 gives product of prime signature, firsts A353500/A085629. %Y A353745 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353745 A124010 gives prime signature, sorted A118914. %Y A353745 A181819 gives prime shadow, with an inverse A181821. %Y A353745 A182850/A323014 give frequency depth, counted by A225485/A325280. %Y A353745 Cf. A005811, A097318, A130091, A304678, A333755, A353503, A353507, A353742. %Y A353745 Cf. also A329747. %K A353745 nonn %O A353745 1,12 %A A353745 _Gus Wiseman_, May 20 2022