cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353745 Number of runs in the ordered prime signature of n.

This page as a plain text file.
%I A353745 #13 Jan 20 2025 16:22:08
%S A353745 0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1,
%T A353745 1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,1,2,1,1,1,1,2,
%U A353745 1,1,1,2,1,1,2,2,1,1,1,2,1,1,1,2,1,1,1,2,1,3,1,2,1,1,1,2,1,2,2,1,1,1,1,2,1
%N A353745 Number of runs in the ordered prime signature of n.
%C A353745 First differs from A071625 at a(90) = 3.
%C A353745 First differs from A331592 at a(90) = 3.
%C A353745 A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
%H A353745 Antti Karttunen, <a href="/A353745/b353745.txt">Table of n, a(n) for n = 1..65537</a>
%H A353745 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a>
%H A353745 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%e A353745 The prime indices of 630 are {1,2,2,3,4}, with multiplicities {1,2,1,1}, with runs {{1},{2},{1,1}}, so a(630) = 3.
%t A353745 Table[Length[Split[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}]
%o A353745 (PARI)
%o A353745 pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
%o A353745 runlengths(lista) = if(!#lista, lista, if(1==#lista, List([1]), my(runs=List([]), rl=1); for(i=1, #lista, if((i < #lista) && (lista[i]==lista[i+1]), rl++, listput(runs,rl); rl=1)); (runs)));
%o A353745 A353745(n) = #runlengths(runlengths(pis_to_runs(n))); \\ _Antti Karttunen_, Jan 20 2025
%Y A353745 Positions of first appearances are A354233.
%Y A353745 A001222 counts prime factors, distinct A001221.
%Y A353745 A005361 gives product of prime signature, firsts A353500/A085629.
%Y A353745 A056239 adds up prime indices, row sums of A112798 and A296150.
%Y A353745 A124010 gives prime signature, sorted A118914.
%Y A353745 A181819 gives prime shadow, with an inverse A181821.
%Y A353745 A182850/A323014 give frequency depth, counted by A225485/A325280.
%Y A353745 Cf. A005811, A097318, A130091, A304678, A333755, A353503, A353507, A353742.
%Y A353745 Cf. also A329747.
%K A353745 nonn
%O A353745 1,12
%A A353745 _Gus Wiseman_, May 20 2022