This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353752 #9 May 08 2022 15:39:00 %S A353752 1,2,2,6,2,4,4,8,12,4,4,12,6,8,4,30,6,24,8,12,8,8,8,16,30,12,16,24,8, %T A353752 8,16,36,8,12,8,72,18,16,12,16,12,16,20,24,24,16,16,60,36,60,12,36,18, %U A353752 32,8,32,16,16,16,24,30,32,48,126,12,16,32,36,16,16,24,96,36,36,60,48,16,24,32,60,110,24,24,48,12 %N A353752 Multiplicative with a(p^e) = phi(sigma(p^e)). %H A353752 Antti Karttunen, <a href="/A353752/b353752.txt">Table of n, a(n) for n = 1..16384</a> %H A353752 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A353752 Multiplicative with a(p^e) = A062401(p^e). %F A353752 a(n) = Product_{p^e||n} phi(sigma(p^e)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n. %F A353752 a(n) = A062401(n) - A353753(n). %o A353752 (PARI) %o A353752 A062401(n) = eulerphi(sigma(n)); %o A353752 A353752(n) = { my(f = factor(n)); prod(k=1, #f~, A062401(f[k, 1]^f[k, 2])); }; %Y A353752 Cf. A000010, A000203, A062401, A353753, A353754, A353755. %Y A353752 Cf. A336547 (positions where equal to A062401), A336548 (positions where less). %Y A353752 Cf. also A353802. %K A353752 nonn,mult %O A353752 1,2 %A A353752 _Antti Karttunen_, May 08 2022