This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353755 #12 May 08 2022 15:39:43 %S A353755 1,1,1,1,1,1,1,1,1,3,1,1,1,1,2,1,1,1,1,1,2,3,1,1,1,1,1,1,1,3,1,1,2,3, %T A353755 2,1,1,1,2,3,1,2,1,1,1,3,1,1,1,1,2,7,1,1,3,1,2,3,1,2,1,1,1,1,2,3,1,1, %U A353755 2,3,1,1,1,1,1,1,2,2,1,1,1,3,1,2,3,1,2,3,1,3,2,1,2,3,2,1,1,3,1,1,1,3,1,1,4 %N A353755 a(n) = A062401(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)). %C A353755 Numerator of fraction A062401(n) / A353752(n). %H A353755 Antti Karttunen, <a href="/A353755/b353755.txt">Table of n, a(n) for n = 1..65537</a> %H A353755 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A353755 a(n) = A062401(n) / A353754(n) = A062401(n) / gcd(A062401(n), A353752(n)). %o A353755 (PARI) %o A353755 A062401(n) = eulerphi(sigma(n)); %o A353755 A353755(n) = { my(f = factor(n)); (A062401(n) / gcd(A062401(n), prod(k=1, #f~, A062401(f[k, 1]^f[k, 2])))); }; %Y A353755 Cf. A000010, A000203, A062401, A353752, A353753, A353754, A353756 (denominators). %Y A353755 Cf. A336547 (positions of 1's), A336548 (positions of terms > 1). %Y A353755 Cf. also A353805. %K A353755 nonn,frac %O A353755 1,10 %A A353755 _Antti Karttunen_, May 08 2022