This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353756 #9 May 08 2022 15:39:49 %S A353756 1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2, %T A353756 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,6,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1, %U A353756 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1 %N A353756 a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)). %C A353756 Denominator of fraction A062401(n) / A353752(n). %H A353756 Antti Karttunen, <a href="/A353756/b353756.txt">Table of n, a(n) for n = 1..65537</a> %H A353756 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A353756 a(n) = A353752(n) / A353754(n) = A353752(n) / gcd(A062401(n), A353752(n)). %o A353756 (PARI) %o A353756 A062401(n) = eulerphi(sigma(n)); %o A353756 A353756(n) = { my(f = factor(n), u=prod(k=1, #f~, A062401(f[k, 1]^f[k, 2]))); (u / gcd(A062401(n), u)); }; %Y A353756 Cf. A000010, A000203, A062401, A353752, A353753, A353754, A353755 (numerators). %Y A353756 Cf. also A353806. %K A353756 nonn,frac %O A353756 1,10 %A A353756 _Antti Karttunen_, May 08 2022