cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353756 a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

This page as a plain text file.
%I A353756 #9 May 08 2022 15:39:49
%S A353756 1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,
%T A353756 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,6,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,
%U A353756 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1
%N A353756 a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).
%C A353756 Denominator of fraction A062401(n) / A353752(n).
%H A353756 Antti Karttunen, <a href="/A353756/b353756.txt">Table of n, a(n) for n = 1..65537</a>
%H A353756 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A353756 a(n) = A353752(n) / A353754(n) = A353752(n) / gcd(A062401(n), A353752(n)).
%o A353756 (PARI)
%o A353756 A062401(n) = eulerphi(sigma(n));
%o A353756 A353756(n) = { my(f = factor(n), u=prod(k=1, #f~, A062401(f[k, 1]^f[k, 2]))); (u / gcd(A062401(n), u)); };
%Y A353756 Cf. A000010, A000203, A062401, A353752, A353753, A353754, A353755 (numerators).
%Y A353756 Cf. also A353806.
%K A353756 nonn,frac
%O A353756 1,10
%A A353756 _Antti Karttunen_, May 08 2022