cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353784 a(n) = sigma(n) / LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

This page as a plain text file.
%I A353784 #8 May 08 2022 16:01:22
%S A353784 1,1,1,1,1,1,1,1,1,3,1,1,1,1,2,1,1,1,1,1,4,3,1,1,1,1,1,1,1,6,1,1,4,3,
%T A353784 2,1,1,1,2,3,1,4,1,1,1,3,1,1,1,1,2,7,1,1,6,1,4,3,1,2,1,1,1,1,2,12,1,1,
%U A353784 4,6,1,1,1,1,1,1,4,2,1,1,1,3,1,4,6,1,2,3,1,3,2,1,4,3,2,1,1,3,1,1,1,6,1,1,8
%N A353784 a(n) = sigma(n) / LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.
%H A353784 Michael De Vlieger, <a href="/A353784/b353784.txt">Table of n, a(n) for n = 1..10000</a>
%H A353784 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A353784 a(n) = A000203(n) / A353783(n).
%t A353784 Array[DivisorSigma[1, #]/(LCM @@ DivisorSigma[1, Power @@@ FactorInteger[#]]) &, 105] (* _Michael De Vlieger_, May 08 2022 *)
%o A353784 (PARI) A353784(n) = { my(f=factor(n)~); (sigma(n) / lcm(vector(#f, i, sigma(f[1, i]^f[2, i])))); };
%Y A353784 Cf. A000203, A353783.
%Y A353784 Cf. A336547 (positions of 1's), A336548 (of terms > 1).
%Y A353784 Cf. also A345045, A345047
%K A353784 nonn
%O A353784 1,10
%A A353784 _Antti Karttunen_, May 08 2022