This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353786 #15 Dec 31 2023 03:40:37 %S A353786 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1, %T A353786 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1, %U A353786 1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2 %N A353786 Number of distinct nonprime numbers of the form 2^k - 1 that divide n. %H A353786 Antti Karttunen, <a href="/A353786/b353786.txt">Table of n, a(n) for n = 1..100000</a> %F A353786 a(n) = A154402(n) - A147645(n). %F A353786 a(n) = a(2*n) = a(A000265(n)). %F A353786 For all primes p, a(p) = 1. %F A353786 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A135972(n) = A065442 - A173898 = 1.0902409734... . - _Amiram Eldar_, Dec 31 2023 %e A353786 Divisors of 255 are [1, 3, 5, 15, 17, 51, 85, 255], of these of the form 2^k - 1 (A000225) are 1, 3, 15 and 255, but only three of them are counted (because 3 is a prime), therefore a(255) = 3. %t A353786 a[n_] := DivisorSum[n, 1 &, !PrimeQ[#] && # + 1 == 2^IntegerExponent[# + 1, 2] &]; Array[a, 120] (* _Amiram Eldar_, May 12 2022 *) %o A353786 (PARI) A353786(n) = { my(m=1,s=0); while(m<=n, s += (!isprime(m))*!(n%m); m += (m+1)); (s); }; %Y A353786 Cf. A000225, A000265, A147645, A154402. %Y A353786 Cf. A065442, A135972, A173898. %K A353786 nonn %O A353786 1,15 %A A353786 _Antti Karttunen_, May 12 2022