cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353802 Multiplicative with a(p^e) = sigma(sigma(p^e)).

This page as a plain text file.
%I A353802 #14 May 09 2022 11:03:25
%S A353802 1,4,7,8,12,28,15,24,14,48,28,56,24,60,84,32,39,56,42,96,105,112,60,
%T A353802 168,32,96,90,120,72,336,63,104,196,156,180,112,60,168,168,288,96,420,
%U A353802 84,224,168,240,124,224,80,128,273,192,120,360,336,360,294,288,168,672,96,252,210,128,288,784,126,312,420,720
%N A353802 Multiplicative with a(p^e) = sigma(sigma(p^e)).
%H A353802 Antti Karttunen, <a href="/A353802/b353802.txt">Table of n, a(n) for n = 1..20000</a>
%H A353802 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A353802 a(n) = Product_{p^e||n} sigma(sigma(p^e)), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.
%F A353802 a(n) = A051027(n) + A353803(n).
%F A353802 a(n) = A353804(n) * A353806(n).
%o A353802 (PARI)
%o A353802 A051027(n) = sigma(sigma(n));
%o A353802 A353802(n) = { my(f = factor(n)); prod(k=1, #f~, A051027(f[k, 1]^f[k, 2])); };
%Y A353802 Cf. A000203, A051027, A353803, A353804, A353805, A353806.
%Y A353802 Cf. also A336547, A336548, A353752.
%K A353802 nonn,mult
%O A353802 1,2
%A A353802 _Antti Karttunen_, May 08 2022