This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353805 #9 May 09 2022 11:02:47 %S A353805 1,1,1,1,1,1,1,1,1,13,1,1,1,1,5,1,1,1,1,1,3,13,1,1,1,1,1,1,1,65,1,1, %T A353805 31,10,31,1,1,1,5,13,1,3,1,1,1,13,1,1,1,1,5,57,1,1,65,1,31,13,1,5,1,1, %U A353805 1,1,7,403,1,1,3,403,1,1,1,1,1,1,3,5,1,1,1,13,1,3,70,1,5,13,1,13,31,1,85,13,5,1,1,13 %N A353805 a(n) = A051027(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)). %C A353805 Denominator of fraction A353802(n) / A051027(n). %H A353805 Antti Karttunen, <a href="/A353805/b353805.txt">Table of n, a(n) for n = 1..20000</a> %H A353805 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A353805 a(n) = A051027(n) / A353804(n). %o A353805 (PARI) %o A353805 A051027(n) = sigma(sigma(n)); %o A353805 A353805(n) = { my(f = factor(n)); (A051027(n) / gcd(A051027(n), prod(k=1, #f~, A051027(f[k, 1]^f[k, 2])))); }; %Y A353805 Cf. A000203, A051027, A353802, A353803, A353804, A353806 (numerators). %Y A353805 Positions of 1's is given by the union of A336547 and A353807. %Y A353805 Cf. also A353755, A353756. %K A353805 nonn,frac %O A353805 1,10 %A A353805 _Antti Karttunen_, May 08 2022