This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353806 #10 May 09 2022 11:02:42 %S A353806 1,1,1,1,1,1,1,1,1,16,1,1,1,1,7,1,1,1,1,1,5,16,1,1,1,1,1,1,1,112,1,1, %T A353806 49,13,45,1,1,1,7,16,1,5,1,1,1,16,1,1,1,1,7,64,1,1,112,1,49,16,1,7,1, %U A353806 1,1,1,9,784,1,1,5,720,1,1,1,1,1,1,5,7,1,1,1,16,1,5,117,1,7,16,1,16,45,1,147,16,7 %N A353806 a(n) = A353802(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)). %C A353806 Numerator of fraction A353802(n) / A051027(n). %H A353806 Antti Karttunen, <a href="/A353806/b353806.txt">Table of n, a(n) for n = 1..20000</a> %H A353806 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A353806 a(n) = A353802(n) / A353804(n) = A353802(n) / gcd(A051027(n), A353802(n)). %o A353806 (PARI) %o A353806 A051027(n) = sigma(sigma(n)); %o A353806 A353806(n) = { my(f = factor(n), u=prod(k=1, #f~, A051027(f[k, 1]^f[k, 2]))); (u / gcd(A051027(n), u)); }; %Y A353806 Cf. A000203, A051027, A353802, A353803, A353804, A353805 (denominators). %Y A353806 Cf. A336547 (positions of 1's), A336548 (positions of terms > 1), see also A353807. %Y A353806 Cf. also A353755, A353756. %K A353806 nonn,frac %O A353806 1,10 %A A353806 _Antti Karttunen_, May 08 2022