A353830 The positions of nonzero digits in the balanced ternary expansions of n and a(n) are the same, and the k-th rightmost nonzero digit in a(n) equals the product of the k rightmost nonzero digits in n.
0, 1, -4, 3, 4, 11, -12, -11, -10, 9, 10, -13, 12, 13, -34, 33, 34, 35, -36, -35, 32, -33, -32, 29, -30, -29, -28, 27, 28, -31, 30, 31, 38, -39, -38, -37, 36, 37, -40, 39, 40, 101, -102, -101, -100, 99, 100, -103, 102, 103, -106, 105, 106, 107, -108, -107, 104
Offset: 0
Examples
The first terms, in decimal and in balanced ternary, are: n a(n) bter(n) bter(a(n)) -- ---- ------- ---------- 0 0 0 0 1 1 1 1 2 -4 1T TT 3 3 10 10 4 4 11 11 5 11 1TT 11T 6 -12 1T0 TT0 7 -11 1T1 TT1 8 -10 10T T0T 9 9 100 100 10 10 101 101 11 -13 11T TTT 12 12 110 110
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6561
Crossrefs
Programs
-
PARI
a(n) = { my (d=[], t, p=1); while (n, d=concat(t=[0,1,-1][1+n%3], d); n=(n-t)/3); forstep (k=#d, 1, -1, if (d[k], d[k]=p*=d[k])); fromdigits(d,3); }
Comments