This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353832 #19 Jan 20 2025 16:22:24 %S A353832 1,2,3,3,5,6,7,5,7,10,11,9,13,14,15,7,17,14,19,15,21,22,23,15,13,26, %T A353832 13,21,29,30,31,11,33,34,35,21,37,38,39,25,41,42,43,33,35,46,47,21,19, %U A353832 26,51,39,53,26,55,35,57,58,59,45,61,62,49,13,65,66,67,51,69,70,71,35,73,74,39,57,77,78,79,35,19 %N A353832 Heinz number of the multiset of run-sums of the prime indices of n. %C A353832 The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4). %C A353832 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A353832 This sequence represents the transformation f(P) described by Kimberling at A237685. %H A353832 Antti Karttunen, <a href="/A353832/b353832.txt">Table of n, a(n) for n = 1..20000</a> %H A353832 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a> %H A353832 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %F A353832 A001222(a(n)) = A001221(n). %F A353832 A001221(a(n)) = A353835(n). %F A353832 A061395(a(n)) = A353862(n). %e A353832 The prime indices of 1260 are {1,1,2,2,3,4}, with run-sums (2,4,3,4), and the multiset {2,3,4,4} has Heinz number 735, so a(1260) = 735. %t A353832 Table[Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,100}] %o A353832 (PARI) %o A353832 pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); }; %o A353832 A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum))); \\ _Antti Karttunen_, Jan 20 2025 %Y A353832 The number of distinct prime factors of a(n) is A353835, weak A353861. %Y A353832 The version for compositions is A353847, listed A353932. %Y A353832 The greatest prime factor of a(n) has index A353862, least A353931. %Y A353832 A001222 counts prime factors, distinct A001221. %Y A353832 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353832 A300273 ranks collapsible partitions, counted by A275870. %Y A353832 A353833 ranks partitions with all equal run-sums, counted by A304442. %Y A353832 A353838 ranks partitions with all distinct run-sums, counted by A353837. %Y A353832 A353840-A353846 pertain to partition run-sum trajectory. %Y A353832 A353851 counts compositions w/ all equal run-sums, ranked by A353848. %Y A353832 A353864 counts rucksack partitions, ranked by A353866. %Y A353832 A353865 counts perfect rucksack partitions, ranked by A353867. %Y A353832 Cf. A005811, A047966, A071625, A073093, A181819, A182850, A182857, A304660, A323014, A353834, A353839, A353841 (1 + iterations needed to reach a squarefree number). %K A353832 nonn %O A353832 1,2 %A A353832 _Gus Wiseman_, May 23 2022 %E A353832 More terms from _Antti Karttunen_, Jan 20 2025