A353834 Nonprime numbers whose prime indices have all equal run-sums.
1, 4, 8, 9, 12, 16, 25, 27, 32, 40, 49, 63, 64, 81, 112, 121, 125, 128, 144, 169, 243, 256, 289, 325, 343, 351, 352, 361, 512, 529, 625, 675, 729, 832, 841, 931, 961, 1008, 1024, 1331, 1369, 1539, 1600, 1681, 1728, 1849, 2048, 2176, 2187, 2197, 2209, 2401
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 4: {1,1} 8: {1,1,1} 9: {2,2} 12: {1,1,2} 16: {1,1,1,1} 25: {3,3} 27: {2,2,2} 32: {1,1,1,1,1} 40: {1,1,1,3} 49: {4,4} 63: {2,2,4} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 112: {1,1,1,1,4} 121: {5,5} 125: {3,3,3} 128: {1,1,1,1,1,1,1} For example, 675 is in the sequence because its prime indices {2,2,2,3,3} have run-sums (6,6).
Crossrefs
Programs
-
Mathematica
Select[Range[100],!PrimeQ[#]&&SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
-
Python
from itertools import count, islice from sympy import factorint, primepi def A353848_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n: n == 1 or (sum((f:=factorint(n)).values()) > 1 and len(set(primepi(p)*e for p, e in f.items())) <= 1), count(max(startvalue,1))) A353848_list = list(islice(A353848_gen(),30)) # Chai Wah Wu, May 27 2022
Comments