This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353839 #6 Jun 04 2022 22:19:33 %S A353839 12,40,60,63,84,112,120,126,132,144,156,204,228,252,276,280,300,315, %T A353839 325,336,348,351,352,360,372,420,440,444,492,504,516,520,560,564,588, %U A353839 630,636,650,660,675,680,693,702,708,720,732,760,780,804,819,832,840,852 %N A353839 Numbers whose prime indices do not have all distinct run-sums. %C A353839 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A353839 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). %e A353839 The terms together with their prime indices begin: %e A353839 12: {1,1,2} %e A353839 40: {1,1,1,3} %e A353839 60: {1,1,2,3} %e A353839 63: {2,2,4} %e A353839 84: {1,1,2,4} %e A353839 112: {1,1,1,1,4} %e A353839 120: {1,1,1,2,3} %e A353839 126: {1,2,2,4} %e A353839 132: {1,1,2,5} %e A353839 144: {1,1,1,1,2,2} %e A353839 156: {1,1,2,6} %e A353839 204: {1,1,2,7} %e A353839 228: {1,1,2,8} %e A353839 252: {1,1,2,2,4} %e A353839 276: {1,1,2,9} %e A353839 280: {1,1,1,3,4} %e A353839 300: {1,1,2,3,3} %e A353839 315: {2,2,3,4} %t A353839 Select[Range[100],!UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&] %Y A353839 For equal run-sums we have A353833, counted by A304442, nonprime A353834. %Y A353839 The complement is A353838, counted by A353837. %Y A353839 A001222 counts prime factors, distinct A001221. %Y A353839 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353839 A098859 counts partitions with distinct multiplicities, ranked by A130091. %Y A353839 A165413 counts distinct run-sums in binary expansion. %Y A353839 A300273 ranks collapsible partitions, counted by A275870. %Y A353839 A351014 counts distinct runs in standard compositions. %Y A353839 A353832 represents taking run-sums of a partition, compositions A353847. %Y A353839 A353840-A353846 pertain to partition run-sum trajectory. %Y A353839 A353852 ranks compositions with all distinct run-sums, counted by A353850. %Y A353839 A353862 gives the greatest run-sum of prime indices, least A353931. %Y A353839 A353866 ranks rucksack partitions, counted by A353864. %Y A353839 Cf. A002110, A071625, A073093, A116608, A118914, A124010, A353861, A353867. %K A353839 nonn %O A353839 1,1 %A A353839 _Gus Wiseman_, Jun 04 2022