This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353840 #11 May 27 2022 16:48:37 %S A353840 1,2,3,4,3,5,6,7,8,5,9,7,10,11,12,9,7,13,14,15,16,7,17,18,14,19,20,15, %T A353840 21,22,23,24,15,25,13,26,27,13,28,21,29,30,31,32,11,33,34,35,36,21,37, %U A353840 38,39,40,25,13,41,42,43,44,33,45,35,46,47,48,21,49,19 %N A353840 Trajectory of the partition run-sum transformation of n, using Heinz numbers. %C A353840 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A353840 The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 given in row 12 corresponds to the partitions (2,1,1) -> (2,2) -> (4). %C A353840 This is the iteration of the transformation f described by Kimberling at A237685. %e A353840 Triangle begins: %e A353840 1 %e A353840 2 %e A353840 3 %e A353840 4 3 %e A353840 5 %e A353840 6 %e A353840 7 %e A353840 8 5 %e A353840 9 7 %e A353840 10 %e A353840 11 %e A353840 12 9 7 %e A353840 Row 87780 is the following trajectory (left column), with prime indices shown on the right: %e A353840 87780: {1,1,2,3,4,5,8} %e A353840 65835: {2,2,3,4,5,8} %e A353840 51205: {3,4,4,5,8} %e A353840 19855: {3,5,8,8} %e A353840 2915: {3,5,16} %t A353840 Table[NestWhileList[Times@@Prime/@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&,n,Not@*SquareFreeQ],{n,30}] %Y A353840 The version for run-lengths instead of sums is A325239 or A325277. %Y A353840 This is the iteration of A353832, with composition version A353847. %Y A353840 Row-lengths are A353841, counted by A353846. %Y A353840 Final terms are A353842. %Y A353840 Counting rows by final omega gives A353843. %Y A353840 Rows ending in a prime number are A353844, counted by A353845. %Y A353840 These sequences for compositions are A353853-A353859. %Y A353840 A001222 counts prime factors, distinct A001221. %Y A353840 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353840 A124010 gives prime signature, sorted A118914. %Y A353840 A182850 or A323014 gives frequency depth. %Y A353840 A300273 ranks collapsible partitions, counted by A275870. %Y A353840 A353833 ranks partitions with all equal run-sums, counted by A304442. %Y A353840 A353835 counts distinct run-sums of prime indices, weak A353861. %Y A353840 A353838 ranks partitions with all distinct run-sums, counted by A353837. %Y A353840 A353862 gives greatest run-sum of prime indices, least A353931. %Y A353840 Cf. A071625, A073093, A181819, A323023, A353743, A353834, A353864, A353865, A353866, A353867. %K A353840 nonn %O A353840 1,2 %A A353840 _Gus Wiseman_, May 25 2022