This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353841 #15 Jan 20 2025 16:22:37 %S A353841 0,1,1,2,1,1,1,2,2,1,1,3,1,1,1,2,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1, %T A353841 1,2,1,1,1,3,1,1,1,2,2,1,1,2,2,2,1,2,1,2,1,2,1,1,1,3,1,1,3,2,1,1,1,2, %U A353841 1,1,1,2,1,1,2,2,1,1,1,2,2,1,1,4,1,1,1,2,1,2,1,2,1,1,1,2,1,2,2,2,1,1,1,2,1,1,1,2,1,1,1,3 %N A353841 Length of the trajectory of the partition run-sum transformation of n, using Heinz numbers; a(1) = 0. %C A353841 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A353841 Starting with n, this is one plus the number of times one must apply A353832 to reach a squarefree number. %C A353841 Also Kimberling's depth statistic (defined in A237685 and A237750) plus one. %H A353841 Antti Karttunen, <a href="/A353841/b353841.txt">Table of n, a(n) for n = 1..65537</a> %H A353841 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %F A353841 a(1) = 0, and for n > 1, if A008966(n) = 1 [n is in A005117], a(n) = 1, otherwise a(n) = 1+a(A353832(n)). [See comments] - _Antti Karttunen_, Jan 20 2025 %e A353841 The trajectory for a(1080) = 4 is the following, with prime indices shown on the right: %e A353841 1080: {1,1,1,2,2,2,3} %e A353841 325: {3,3,6} %e A353841 169: {6,6} %e A353841 37: {12} %e A353841 The trajectory for a(87780) = 5 is the following, with prime indices shown on the right: %e A353841 87780: {1,1,2,3,4,5,8} %e A353841 65835: {2,2,3,4,5,8} %e A353841 51205: {3,4,4,5,8} %e A353841 19855: {3,5,8,8} %e A353841 2915: {3,5,16} %e A353841 The trajectory for a(39960) = 5 is the following, with prime indices shown on the right: %e A353841 39960: {1,1,1,2,2,2,3,12} %e A353841 12025: {3,3,6,12} %e A353841 6253: {6,6,12} %e A353841 1369: {12,12} %e A353841 89: {24} %t A353841 Table[If[n==1,0,Length[NestWhileList[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&]]],{n,100}] %o A353841 (PARI) %o A353841 pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); }; %o A353841 A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum))); %o A353841 A353841(n) = if(1==n,0,for(i=1,oo,if(issquarefree(n), return(i), n = A353832(n)))); \\ _Antti Karttunen_, Jan 20 2025 %Y A353841 Positions of 1's are A005117. %Y A353841 The version for run-lengths instead of sums is A182850 or A323014. %Y A353841 Positions of first appearances are A353743. %Y A353841 These are the row-lengths of A353840. %Y A353841 Other sequences pertaining to this trajectory are A353842-A353845. %Y A353841 Counting partitions by this statistic gives A353846. %Y A353841 The version for compositions is A353854, run-lengths of A353853. %Y A353841 A001222 counts prime factors, distinct A001221. %Y A353841 A005811 counts runs in binary expansion. %Y A353841 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353841 A300273 ranks collapsible partitions, counted by A275870. %Y A353841 A318928 gives runs-resistance of binary expansion. %Y A353841 A353832 represents the operation of taking run-sums of a partition. %Y A353841 A353833 ranks partitions with all equal run-sums, counted by A304442. %Y A353841 A353835 counts distinct run-sums of prime indices, weak A353861. %Y A353841 A353838 ranks partitions with all distinct run-sums, counted by A353837. %Y A353841 A353866 ranks rucksack partitions, counted by A353864. %Y A353841 Cf. A008966, A071625, A073093, A181819, A182857, A325239, A325277, A325278, A353834, A353847, A353865, A353867. %K A353841 nonn %O A353841 1,4 %A A353841 _Gus Wiseman_, May 25 2022 %E A353841 More terms from _Antti Karttunen_, Jan 20 2025