cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353843 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory ending in a partition of length k. All zeros removed.

This page as a plain text file.
%I A353843 #8 Jun 04 2022 22:27:26
%S A353843 1,1,2,2,1,4,1,2,5,5,5,1,2,12,1,8,11,3,3,19,8,5,27,9,1,2,34,19,1,15,
%T A353843 26,34,2,2,49,45,5,5,68,48,14,4,58,98,15,1,18,76,105,31,1,2,88,159,46,
%U A353843 2,13,98,191,79,4,2,114,261,105,8,14,148,282,164,19
%N A353843 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory ending in a partition of length k. All zeros removed.
%C A353843 The partition run-sum trajectory is obtained by repeatedly taking the run-sums until a strict partition is reached. For example, the trajectory of y = (3,2,1,1,1) is (3,2,1,1,1) -> (3,3,2) -> (6,2), so y is counted under T(8,2).
%e A353843 Triangle begins:
%e A353843    1
%e A353843    1
%e A353843    2
%e A353843    2  1
%e A353843    4  1
%e A353843    2  5
%e A353843    5  5  1
%e A353843    2 12  1
%e A353843    8 11  3
%e A353843    3 19  8
%e A353843    5 27  9  1
%e A353843    2 34 19  1
%e A353843   15 26 34  2
%e A353843    2 49 45  5
%e A353843    5 68 48 14
%e A353843    4 58 98 15  1
%e A353843 For example, row n = 8 counts the following partitions:
%e A353843   (8)         (53)       (431)
%e A353843   (44)        (62)       (521)
%e A353843   (422)       (71)       (3221)
%e A353843   (2222)      (332)
%e A353843   (4211)      (611)
%e A353843   (41111)     (3311)
%e A353843   (221111)    (5111)
%e A353843   (11111111)  (22211)
%e A353843               (32111)
%e A353843               (311111)
%e A353843               (2111111)
%t A353843 Table[Length[Select[IntegerPartitions[n], Length[FixedPoint[Sort[Total/@Split[#]]&,#]]==k&]],{n,0,15},{k,0,n}]
%Y A353843 Row sums are A000041.
%Y A353843 Row-lengths are A003056.
%Y A353843 The last part of the same trajectory is A353842.
%Y A353843 Column k = 1 is A353845, compositions A353858.
%Y A353843 The length of the trajectory is A353846.
%Y A353843 The version for compositions is A353856.
%Y A353843 A275870 counts collapsible partitions, ranked by A300273.
%Y A353843 A304442 counts partitions with constant run-sums, ranked by A353833/A353834.
%Y A353843 A325268 counts partitions by omicron, rank statistic A304465.
%Y A353843 A353837 counts partitions with all distinct run-sums, ranked by A353838.
%Y A353843 A353840-A353846 pertain to partition run-sum trajectory.
%Y A353843 A353847 represents the run-sums of a composition, partitions A353832.
%Y A353843 A353864 counts rucksack partitions, ranked by A353866.
%Y A353843 A353865 counts perfect rucksack partitions, ranked by A353867.
%Y A353843 A353932 lists run-sums of standard compositions.
%Y A353843 Cf. A008284, A116608, A325242, A325268, A225485 or A325280.
%Y A353843 Cf. A047966, A237685, A325277, A353841, A353853-A353859.
%K A353843 nonn,tabf
%O A353843 0,3
%A A353843 _Gus Wiseman_, Jun 04 2022