This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353843 #8 Jun 04 2022 22:27:26 %S A353843 1,1,2,2,1,4,1,2,5,5,5,1,2,12,1,8,11,3,3,19,8,5,27,9,1,2,34,19,1,15, %T A353843 26,34,2,2,49,45,5,5,68,48,14,4,58,98,15,1,18,76,105,31,1,2,88,159,46, %U A353843 2,13,98,191,79,4,2,114,261,105,8,14,148,282,164,19 %N A353843 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory ending in a partition of length k. All zeros removed. %C A353843 The partition run-sum trajectory is obtained by repeatedly taking the run-sums until a strict partition is reached. For example, the trajectory of y = (3,2,1,1,1) is (3,2,1,1,1) -> (3,3,2) -> (6,2), so y is counted under T(8,2). %e A353843 Triangle begins: %e A353843 1 %e A353843 1 %e A353843 2 %e A353843 2 1 %e A353843 4 1 %e A353843 2 5 %e A353843 5 5 1 %e A353843 2 12 1 %e A353843 8 11 3 %e A353843 3 19 8 %e A353843 5 27 9 1 %e A353843 2 34 19 1 %e A353843 15 26 34 2 %e A353843 2 49 45 5 %e A353843 5 68 48 14 %e A353843 4 58 98 15 1 %e A353843 For example, row n = 8 counts the following partitions: %e A353843 (8) (53) (431) %e A353843 (44) (62) (521) %e A353843 (422) (71) (3221) %e A353843 (2222) (332) %e A353843 (4211) (611) %e A353843 (41111) (3311) %e A353843 (221111) (5111) %e A353843 (11111111) (22211) %e A353843 (32111) %e A353843 (311111) %e A353843 (2111111) %t A353843 Table[Length[Select[IntegerPartitions[n], Length[FixedPoint[Sort[Total/@Split[#]]&,#]]==k&]],{n,0,15},{k,0,n}] %Y A353843 Row sums are A000041. %Y A353843 Row-lengths are A003056. %Y A353843 The last part of the same trajectory is A353842. %Y A353843 Column k = 1 is A353845, compositions A353858. %Y A353843 The length of the trajectory is A353846. %Y A353843 The version for compositions is A353856. %Y A353843 A275870 counts collapsible partitions, ranked by A300273. %Y A353843 A304442 counts partitions with constant run-sums, ranked by A353833/A353834. %Y A353843 A325268 counts partitions by omicron, rank statistic A304465. %Y A353843 A353837 counts partitions with all distinct run-sums, ranked by A353838. %Y A353843 A353840-A353846 pertain to partition run-sum trajectory. %Y A353843 A353847 represents the run-sums of a composition, partitions A353832. %Y A353843 A353864 counts rucksack partitions, ranked by A353866. %Y A353843 A353865 counts perfect rucksack partitions, ranked by A353867. %Y A353843 A353932 lists run-sums of standard compositions. %Y A353843 Cf. A008284, A116608, A325242, A325268, A225485 or A325280. %Y A353843 Cf. A047966, A237685, A325277, A353841, A353853-A353859. %K A353843 nonn,tabf %O A353843 0,3 %A A353843 _Gus Wiseman_, Jun 04 2022