A353844 Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 25: {3,3} 64: {1,1,1,1,1,1} 2: {1} 27: {2,2,2} 67: {19} 3: {2} 29: {10} 71: {20} 4: {1,1} 31: {11} 73: {21} 5: {3} 32: {1,1,1,1,1} 79: {22} 7: {4} 37: {12} 81: {2,2,2,2} 8: {1,1,1} 40: {1,1,1,3} 83: {23} 9: {2,2} 41: {13} 84: {1,1,2,4} 11: {5} 43: {14} 89: {24} 12: {1,1,2} 47: {15} 97: {25} 13: {6} 49: {4,4} 101: {26} 16: {1,1,1,1} 53: {16} 103: {27} 17: {7} 59: {17} 107: {28} 19: {8} 61: {18} 109: {29} 23: {9} 63: {2,2,4} 112: {1,1,1,1,4} The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence. The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
Crossrefs
Programs
-
Mathematica
ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k]; Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]
Comments