A353854 Length of the trajectory of the composition run-sum transformation (condensation) of the n-th composition in standard order.
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 1, 1, 1, 2, 2, 2, 2
Offset: 0
Keywords
Examples
The trajectory of 94685 and the a(94685) = 5 corresponding compositions: 94685: (2,1,1,4,1,1,2,1,1,2,1) 86357: (2,2,4,2,2,2,2,1) 69889: (4,4,8,1) 65793: (8,8,1) 65537: (16,1)
Crossrefs
Positions of first appearances are A072639.
The version for partitions is A353841.
The last part of the same trajectory is A353855.
This is the rank statistic counted by A353859.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A333627 represents the run-lengths of standard compositions.
A353832 represents the run-sum transformation of a partition.
A353847 represents the run-sum transformation of a composition.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Table[Length[FixedPointList[Total/@Split[#]&,stc[n]]]-1,{n,0,100}]
Comments