cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353856 Triangle read by rows where T(n,k) is the number of integer compositions of n with run-sum trajectory (condensation) ending in a composition of length k.

This page as a plain text file.
%I A353856 #6 Jun 03 2022 07:42:43
%S A353856 1,0,1,0,2,0,0,2,2,0,0,5,2,1,0,0,2,12,2,0,0,0,8,10,12,2,0,0,0,2,32,23,
%T A353856 6,1,0,0,0,20,26,51,28,3,0,0,0,0,5,66,109,52,22,2,0,0,0,0,8,108,144,
%U A353856 188,53,10,1,0,0,0,0,2,134,358,282,196,48,4,0,0,0,0
%N A353856 Triangle read by rows where T(n,k) is the number of integer compositions of n with run-sum trajectory (condensation) ending in a composition of length k.
%C A353856 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums transformation (or condensation, represented by A353847) until an anti-run is reached. For example, the trajectory (2,1,1,3,1,1,2,1,1,2,1) -> (2,2,3,2,2,2,2,1) -> (4,3,8,1) is counted under T(15,4).
%e A353856 Triangle begins:
%e A353856    1
%e A353856    0   1
%e A353856    0   2   0
%e A353856    0   2   2   0
%e A353856    0   5   2   1   0
%e A353856    0   2  12   2   0   0
%e A353856    0   8  10  12   2   0   0
%e A353856    0   2  32  23   6   1   0   0
%e A353856    0  20  26  51  28   3   0   0   0
%e A353856    0   5  66 109  52  22   2   0   0   0
%e A353856    0   8 108 144 188  53  10   1   0   0   0
%e A353856    0   2 134 358 282 196  48   4   0   0   0   0
%e A353856 For example, row n = 6 counts the following compositions:
%e A353856   .  (6)       (15)     (123)    (1212)  .  .
%e A353856      (33)      (24)     (132)    (2121)
%e A353856      (222)     (42)     (141)
%e A353856      (1113)    (51)     (213)
%e A353856      (2112)    (114)    (231)
%e A353856      (3111)    (411)    (312)
%e A353856      (11211)   (1122)   (321)
%e A353856      (111111)  (2211)   (1131)
%e A353856                (11112)  (1221)
%e A353856                (21111)  (1311)
%e A353856                         (11121)
%e A353856                         (12111)
%t A353856 Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],Length[FixedPoint[Total/@Split[#]&,#]]==k&]],{n,0,15},{k,0,n}]
%Y A353856 Row sums are A011782.
%Y A353856 Row-lengths without zeros appear to be A131737.
%Y A353856 The version for partitions is A353843.
%Y A353856 The length of the trajectory is A353854, firsts A072639, partitions A353841.
%Y A353856 The last part of the same trajectory is A353855.
%Y A353856 Column k = 1 is A353858.
%Y A353856 A066099 lists compositions in standard order.
%Y A353856 A318928 gives runs-resistance of binary expansion.
%Y A353856 A325268 counts partitions by omicron, rank statistic A304465.
%Y A353856 A333489 ranks anti-runs, counted by A003242 (complement A261983).
%Y A353856 A333627 ranks the run-lengths of standard compositions.
%Y A353856 A353840-A353846 pertain to partition run-sum trajectory.
%Y A353856 A353847 represents the run-sums of a composition, partitions A353832.
%Y A353856 A353853-A353859 pertain to composition run-sum trajectory.
%Y A353856 A353932 lists run-sums of standard compositions.
%Y A353856 Cf. A237685, A238279, A304442, A325277, A333755, A353848, A353850, A353852.
%K A353856 nonn,tabl
%O A353856 0,5
%A A353856 _Gus Wiseman_, Jun 01 2022