This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353857 #6 Jun 03 2022 07:42:48 %S A353857 1,2,3,4,7,8,10,11,14,15,16,31,32,36,39,42,46,59,60,63,64,127,128,136, %T A353857 138,139,142,143,168,170,174,175,184,186,187,232,238,239,248,250,251, %U A353857 255,256,292,316,487,511,512,528,543,682,750,955,1008,1023,1024,2047 %N A353857 Numbers k such that the k-th composition in standard order has run-sum trajectory ending in a singleton. %C A353857 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 corresponds to the trajectory (2,1,1) -> (2,2) -> (4). %C A353857 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %e A353857 The terms together with their binary expansions and corresponding compositions begin: %e A353857 1: 1 (1) %e A353857 2: 10 (2) %e A353857 3: 11 (1,1) %e A353857 4: 100 (3) %e A353857 7: 111 (1,1,1) %e A353857 8: 1000 (4) %e A353857 10: 1010 (2,2) %e A353857 11: 1011 (2,1,1) %e A353857 14: 1110 (1,1,2) %e A353857 15: 1111 (1,1,1,1) %e A353857 16: 10000 (5) %e A353857 31: 11111 (1,1,1,1,1) %e A353857 32: 100000 (6) %e A353857 36: 100100 (3,3) %e A353857 39: 100111 (3,1,1,1) %e A353857 42: 101010 (2,2,2) %e A353857 46: 101110 (2,1,1,2) %e A353857 59: 111011 (1,1,2,1,1) %e A353857 60: 111100 (1,1,1,3) %e A353857 63: 111111 (1,1,1,1,1,1) %t A353857 stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A353857 Select[Range[100],Length[FixedPoint[Total/@Split[#]&,stc[#]]]==1&] %Y A353857 The version for partitions is A353844. %Y A353857 The trajectory length is A353854, firsts A072639, for partitions A353841. %Y A353857 The last part of the trajectory is A353855, for partitions A353842. %Y A353857 These compositions are counted by A353858. %Y A353857 A005811 counts runs in binary expansion. %Y A353857 A011782 counts compositions. %Y A353857 A066099 lists compositions in standard order. %Y A353857 A318928 gives runs-resistance of binary expansion. %Y A353857 A325268 counts partitions by omicron, rank statistic A304465. %Y A353857 A333627 ranks the run-lengths of standard compositions. %Y A353857 A351014 counts distinct runs in standard compositions, firsts A351015. %Y A353857 A353840-A353846 pertain to partition run-sum trajectory. %Y A353857 A353847 represents composition run-sum transformation, partitions A353832. %Y A353857 A353853-A353859 pertain to composition run-sum trajectory. %Y A353857 A353932 lists run-sums of standard compositions. %Y A353857 Cf. A237685, A238279, A304442, A325277, A333381, A333755, A353848, A353849, A353850, A353852. %K A353857 nonn %O A353857 1,2 %A A353857 _Gus Wiseman_, Jun 01 2022