cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353858 Number of integer compositions of n with run-sum trajectory ending in a singleton.

This page as a plain text file.
%I A353858 #6 Jun 17 2022 22:12:40
%S A353858 0,1,2,2,5,2,8,2,20,5,8,2,78,2,8,8,223,2,179,2,142,8,8,2,4808
%N A353858 Number of integer compositions of n with run-sum trajectory ending in a singleton.
%C A353858 Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums (cf. A353847) until an anti-run composition (A003242) is reached. For example, the composition (2,2,1,1,2) is counted under a(8) because it has the following run-sum trajectory: (2,2,1,1,2) -> (4,2,2) -> (4,4) -> (8).
%e A353858 The a(0) = 0 through a(8) = 20 compositions:
%e A353858   .  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A353858           (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
%e A353858                        (112)            (222)                (224)
%e A353858                        (211)            (1113)               (422)
%e A353858                        (1111)           (2112)               (1124)
%e A353858                                         (3111)               (2114)
%e A353858                                         (11211)              (2222)
%e A353858                                         (111111)             (4112)
%e A353858                                                              (4211)
%e A353858                                                              (11114)
%e A353858                                                              (21122)
%e A353858                                                              (22112)
%e A353858                                                              (41111)
%e A353858                                                              (111122)
%e A353858                                                              (112112)
%e A353858                                                              (211211)
%e A353858                                                              (221111)
%e A353858                                                              (1111211)
%e A353858                                                              (1121111)
%e A353858                                                              (11111111)
%t A353858 Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n], Length[FixedPoint[Total/@Split[#]&,#]]==1&]],{n,0,15}]
%Y A353858 The version for partitions is A353845, ranked by A353844.
%Y A353858 The trajectory itself is A353853, last part A353855.
%Y A353858 The lengths of trajectories of standard compositions are A353854.
%Y A353858 This is column k = 1 of A353856, for partitions A353843.
%Y A353858 These compositions are ranked by A353857.
%Y A353858 A011782 counts compositions.
%Y A353858 A066099 lists compositions in standard order.
%Y A353858 A238279 and A333755 count compositions by number of runs.
%Y A353858 A275870 counts collapsible partitions, ranked by A300273.
%Y A353858 A333489 ranks anti-runs, counted by A003242 (complement A261983).
%Y A353858 A353840-A353846 pertain to partition run-sum trajectory.
%Y A353858 A353847 represents the run-sums of a composition, partitions A353832.
%Y A353858 A353851 counts compositions with equal run-sums, ranked by A353848.
%Y A353858 A353859 counts compositions by length of run-sum trajectory.
%Y A353858 A353860 counts collapsible compositions.
%Y A353858 A353932 lists run-sums of standard compositions.
%Y A353858 Cf. A072639, A237685, A304442, A304465, A318928, A353833, A353841, A353849, A353850, A353852.
%K A353858 nonn,more
%O A353858 0,3
%A A353858 _Gus Wiseman_, Jun 17 2022