This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353863 #10 Jan 15 2024 20:29:11 %S A353863 1,1,1,2,2,3,4,6,7,10,11,16,20,24,30,43,47,62,79,94,113,143,170,211, %T A353863 256,307,372,449,531,648,779,926,1100,1323,1562,1864,2190,2595,3053, %U A353863 3611,4242,4977,5834,6825,7973,9344,10844,12641,14699,17072,19822 %N A353863 Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers. %C A353863 A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}. %C A353863 This is a kind of completeness property, cf. A126796. %e A353863 The a(1) = 1 through a(8) = 7 partitions: %e A353863 (1) (11) (21) (211) (311) (321) (3211) (3221) %e A353863 (111) (1111) (2111) (3111) (4111) (32111) %e A353863 (11111) (21111) (22111) (41111) %e A353863 (111111) (31111) (221111) %e A353863 (211111) (311111) %e A353863 (1111111) (2111111) %e A353863 (11111111) %t A353863 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A353863 msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]]; %t A353863 wkrs[y_]:=Union[Total/@Select[msubs[y],SameQ@@#&]]; %t A353863 Table[Length[Select[IntegerPartitions[n],normQ[Rest[wkrs[#]]]&]],{n,0,15}] %o A353863 (PARI) \\ isok(p) tests the partition. %o A353863 isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b,b+1)==0} %o A353863 a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\ _Andrew Howroyd_, Jan 15 2024 %Y A353863 For parts instead of weak run-sums we have A000009. %Y A353863 For multiplicities instead of weak run-sums we have A317081. %Y A353863 If weak run-sums are distinct we have A353865, the completion of A353864. %Y A353863 A003242 counts anti-run compositions, ranked by A333489, complement A261983. %Y A353863 A005811 counts runs in binary expansion. %Y A353863 A165413 counts distinct run-lengths in binary expansion, sums A353929. %Y A353863 A300273 ranks collapsible partitions, counted by A275870, comps A353860. %Y A353863 A353832 represents taking run-sums of a partition, compositions A353847. %Y A353863 A353833 ranks partitions with all equal run-sums, counted by A304442. %Y A353863 A353835 counts distinct run-sums of prime indices. %Y A353863 A353837 counts partitions with distinct run-sums, ranked by A353838. %Y A353863 A353840-A353846 pertain to partition run-sum trajectory. %Y A353863 A353861 counts distinct weak run-sums of prime indices. %Y A353863 A353932 lists run-sums of standard compositions. %Y A353863 Rulers: A103295, A103300, A169942, A325768. %Y A353863 Complete: A002033, A325780, A126796, A276024, A325781, A188431, A353866. %Y A353863 Cf. A047967, A073093, A181819, A237685, A353844, A353867, A353930. %K A353863 nonn %O A353863 0,4 %A A353863 _Gus Wiseman_, Jun 04 2022 %E A353863 a(31) onwards from _Andrew Howroyd_, Jan 15 2024